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in D = 4 and a one-parameter sigma-model based on the hyperbolic group SU(2, 1)++,
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1 Introduction and discussion

Many supergravity theories exhibit continuous global symmetries. These are of importance

both for the generation of solutions to the field equations and also for the study of quanti-

zation. The symmetries are either inherent in the formulation of the theory, as in the case

of type IIB supergravity in D = 10 which admits an SL(2,R) symmetry, or act on cer-

tain subclasses of solutions admitting Killing vectors. This was first noticed in the case of

non-supersymmetric D = 4 gravity with one Killing vector by Ehlers in [1] where it is also

SL(2,R) that acts on the set of solutions. Many other instances of this phenomenon are

known, the most prominent being N = 8 supergravity in D = 4 possessing an exceptional

E7(7) symmetry [2]. This symmetry can also be viewed as a symmetry of the solutions of

N = 1 supergravity in D = 11 admitting seven commuting space-like Killing vectors, in

agreement with the construction of the N = 8 theory in D = 4 by dimensional reduction of

the D = 11 theory on a seven-torus T 7. It is also known that further dimensional reduction

of the N = 8 theory to D = 3 leads to an E8(8) symmetry [3] and to an infinite-dimensional

affine E9(9) symmetry in D = 2 [4, 5]. A longstanding conjecture is that upon further

reduction to D = 1 this yields the hyperbolic Kac-Moody symmetry group E10(10) [4, 6].

This idea has received new impetus in a modified form over the last years. Concretely,

it has been suggested that there should be ways to reformulate the unreduced maximally

supersymmetric D = 11 theory such that it becomes invariant under E10(10) [7] or even

E11(11) [8]. In both cases, the symmetry acts non-linearly on the fields of the theory. An

important difference, however, is the implementation of space-time in the two proposals.

In the case of E10(10) the ten spatial directions are thought to be rearranged in the in-

finitely many fields contained in the hyperbolic symmetry group E10(10) and all the fields

in the proposed non-linear sigma model only depend on a single parameter identified with

time [7]. We will refer to this as the cosmological E10(10) model. In contrast, in the case

of E11(11), all fields depend on the eleven-dimensional space-time coordinates (or even ad-

ditional coordinates implied by E11(11) covariance [9, 10]). By embedding the cosmological

E10(10) model in a one-parameter sigma-model based on E11(11) one can obtain variants

– 1 –
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of the model where the parameter is not identified with time but with a spatial direction.

This model permits one to describe smeared BPS brane solutions [11, 12]. We refer to this

model as the brane E10(10) model.

This picture has been generalized to the case of any simple split symmetry group G in

a theory of gravity coupled to matter in D = 3 in [13]. There is a general construction of

extending the symmetry group G to an affine group G+, a hyperbolic or Lorentzian group

G++ and a Lorentzian group G+++ [14] and in the discussion above E10(10) and E11(11) have

to be replaced by G++ and G+++ to obtain a set of more general conjectures for a wider

class of theories. It has been verified that for all simple G the extended symmetry group

describes the correct field content to make the conjecture work [15] but a full dynamical

confirmation of the conjectures is still an open problem. Many aspects of these ideas

have been discussed and instead of reviewing this work we refer the reader to [16–19] and

references therein for further information.

In the present paper, we investigate these ideas in the context of four-dimensional

pure N = 2 supergravity which is of interest for several reasons. The bosonic sector of this

model consists of gravity coupled to a single Maxwell field. It admits half-BPS solutions like

the extremal Reissner-Nordström black hole. In fact, a general half-BPS solution can be

described by four charges m, n, q and h subject to the constraint m2+n2 = q2+h2 [20, 21].

The first two charges are gravitational mass and NUT charge and the latter two correspond

to the electric and magnetic charges under the Maxwell field. In addition, it has been known

for a long time that the solutions of this model with one Killing vector transform under

the group G = SU(2, 1) [22]. This symmetry group is not in its split real form (which

would be SL(3,R)) and one of our motivations for this work was to investigate whether

the conjectures discussed above apply also in this case (see [23–26] for related work).

In particular, the theory of real forms for the extended infinite-dimensional symmetries

G++ and G+++ is not as well-developed as for finite-dimensional groups but see [27–29]

for some mathematical results. Since the symmetry SU(2, 1) mixes the two gravitational

charges one can study the question of gravitational dualities [19, 21, 30–35] analogous to

electromagnetic duality in this simple model.

In more detail, we show the following in this paper. We first review some facts about

pure N = 2 supergravity in D = 4 and the group SU(2, 1) acting on its solutions with

one time-like or one space-like Killing vector in section 2. Then, we go on to study the

action of the finite-dimensional SU(2, 1) on the BPS solutions in section 3. There we

show that the four charges transform linearly under the non-compact subgroup SL(2,R)×
U(1) of SU(2, 1). In particular, we show that the moduli space of half-BPS solutions can

be described as a certain coset space, in agreement with recent results in the literature,

and discuss the extension to the quantum theory from a string theory perspective. By

analysing the Lie algebra of SU(2, 1)+++ we then demonstrate that the field content of

the extended symmetry group is correct in section 4. This requires understanding which

generators are present in this particular real form of the Kac-Moody algebra. Starting

from this observation, one can construct a correspondence between the one-parameter

cosmological model based on SU(2, 1)++ and N = 2 supergravity in exactly the same way as

for E10(10) and this is shown in section 5. We demonstrate also how the algebraic structure

– 2 –
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of SU(2, 1)+++ captures the half-BPS solutions in section 5. This provides a detailed study

of the proposed infinite-dimensional symmetries of N = 2. The extremal BPS solutions

that occur in N = 2 supergravity can be derived from intersecting brane construction

in M-theory and this leads us to an embedding of the non-split SU(2, 1)+++ in the split

E11(11), which is described in section 6, thus nicely unifying our analysis with existing

results. Questions not addressed in this paper are the supersymmetric deformations of

N = 2 supergravity (e.g. adding a cosmological constant) and their consistency of the

algebraic structure of SU(2, 1)+++ via higher rank forms [36–39] as well as the coupling of

the fermionic sector.

Our results can be taken as evidence that the conjectured G++ and G+++ also appear

in situations when G is not in split real form. Their full verification is subject to the same

restrictions regarding the correct interpretation of the infinity of their generators as in

the case when G is split. One can establish a correspondence (or dictionary) between the

cosmological coset model based on G++ and the supergravity equations at low levels and

account for the algebraic structure of half-BPS solutions in G+++. The finite G part of

the symmetry acts as a solution generating group in D = 3. In particular, there are non-

linear transformations acting as gravitational dualities on BPS solutions. Furthermore, the

construction of N = 2 supergravity as a truncation of the maximal N = 8 theory has an

algebraic counterpart since su(2, 1)+++ is contained in e11 as a subalgebra.

2 Symmetries and BPS solutions of pure N = 2 supergravity

Pure N = 2 supergravity in four dimensions is the natural supersymmetric completion of

Einstein-Maxwell theory. To set the scene, we shall in this section present our conventions

for this theory, and in particular discuss its underlying symmetries in the presence of a

space-like or a time-like Killing vector. The presence of these Killing vectors is equivalent

to performing a Kaluza-Klein reduction of the theory on a space-like or a time-like circle,

respectively. This process reveals a hidden global symmetry in D = 3, described by the

group SU(2,1) [22, 40]. In this section, we also discuss some important properties of this

group and its associated Lie algebra su(2, 1), which will be of importance in the remainder

of this paper.

2.1 Einstein-Maxwell in D = 4

The field content of four-dimensional N = 2 supergravity consists of a gravity multiplet,

with a graviton gαβ , two gravitino Ψa
α (a = 1, 2) and a Maxwell field Aα. The bosonic part

of the theory is then described by the standard Einstein-Maxwell Lagrangian:

L4d =
1

4

√−g
(

R− FαβF
αβ
)

, (2.1)

such that the Maxwell field is minimally coupled to gravity, and where Fαβ = 2 ∂ [αAβ],

locally. We will take space-time M4 to be Lorentzian with signature (−,+,+,+).1 The

1Regarding index notation, Greek letters α, β... will indicate the four-dimensional curved space-time

indices, µ, ν... the three-dimensional curved indices, A, B, ... flat space-time indices, and a, b... flat space

indices.

– 3 –
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equations of motion derived from (2.1), written in flat coordinates, are for the metric

RAB +
1

2
ηABFCDF

CD − 2FACFB
C = 0, (2.2)

and for the Maxwell field

DAFAB = 0. (2.3)

Here D is the covariant derivative with respect to the spin connection. From the symmetry

properties of the fields, we can derive the following Bianchi-identities for the Riemann-

tensor and the field strength

ǫABCDDBFCD = 0, (2.4)

ǫABCDRBCDE = 0. (2.5)

For the analysis of finite symmetries, we will mainly be concerned with space-times

preserving some subgroup of the diffeomorphism group of M4. These residual symmetries

are described by the existence of Killing vectors κ. The Maxwell field will also preserve

this symmetry if its Lie derivative with κ vanishes. The dynamics of such solutions can be

described from a three-dimensional perspective, formally reducing (2.1) on the orbits of κ.

This three-dimensional theory is then living on an orbit space M3 = M4/Σ, where Σ is

the exponentiated action of κ on M4.
2

In three dimensions vector fields have only one propagating degree of freedom and are

hence equivalent to scalar fields. One can therefore dualise a vector — using the Hodge

star on the corresponding field strength — to a scalar by explicitly imposing its Bianchi-

identity and consequently write the three-dimensional Lagrangian only in terms of a metric

and a set of scalars. For example, a four-dimensional stationary Maxwell-field will in three

dimensions be described by two scalars (one from the component of the potential in the

time-direction, and one from dualisation). As we will see below, this will concretely realize

electromagnetic duality as well as a gravitational duality such as the Ehlers symmetry.

As a consequence, the three-dimensional theory allows for a big set of symmetries, acting

on the set of solutions preserving the given Killing vector. In fact, the moduli space of

solutions (almost) realizes a generally non-linear representation of this symmetry group.

We will discuss this in more detail in section 3.

2.2 SU(2, 1) and coset models

In the following, the group SU(2, 1) and some of its subgroups will play an important role

since SU(2, 1) is the global symmetry group of Einstein-Maxwell theory in the presence of

a Killing vector [22]. We briefly discuss its definition and the construction of coset models

with SU(2, 1) symmetry, relegating more details and explicit expressions of the generators

to the appendices A and B.

2Note that generally κ will vanish on certain submanifolds of M4, and when defining its orbit space, we

choose a component of M4 where κ is non-vanishing and connected to infinity.

– 4 –
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α4

α5

Figure 1. The Tits-Satake diagram of the real form su(2, 1). This real form is in one to one

correspondence with a conjugation σ of the complex Lie algebraA2 = sl(3,C) which fixes completely

su(2, 1). The Tits-Satake diagram precisely gives the action of σ on the simple roots of A2. The

presence of the double arrow means that σ(α4) = α5 and σ(α5) = α4. See section 4 and appendix B

for more details.

In our conventions the group SU(2, 1) is defined by the set of all unit-determinant

complex (3 × 3) matrices g that preserve a metric η of signature (2, 1);

SU(2, 1) =
{

g ∈ SL(3,C) : g†ηg = η
}

with η =






0 0 −1

0 1 0

−1 0 0




 , (2.6)

and we denote the associated Lie algebra by su(2, 1). This Lie algebra is a real form3

of sl(3,C) which may be described via the Tits-Satake diagram shown in figure 1. The

labelling of nodes in figure 1 is chosen to leave room for the extension of su(2, 1) to the

Kac-Moody algebra su(2, 1)+++ to be discussed in section 4.

The Lie algebra su(2, 1) has two maximal subalgebras that will play a central role in

what follows. The first one is the maximal compact subalgebra k = su(2) ⊕ u(1), defined

by the subset of generators which are pointwise fixed by the so-called Cartan involution θ:

k = su(2) ⊕ u(1) = {x ∈ su(2, 1) : θ(x) = x}. (2.7)

The other (non-compact) maximal subalgebra is k∗ = sl(2,R) ⊕ u(1), which is similarly

defined with respect to a “temporal involution” Ω4. The two involutions θ and Ω4 are

discussed in more detail in appendices B.2, B.4 and in section 4.4. The Cartan involution

induces the following Cartan decomposition in terms of vector spaces (see, e.g., [41])

su(2, 1) = k ⊕ p, (2.8)

where p is the subspace which is anti-invariant under θ, corresponding to the orthogonal

complement of k with respect to the Killing form on su(2, 1). Similarly, the temporal

involution Ω4 induces the analogous decomposition

su(2, 1) = k∗ ⊕ p∗. (2.9)

Note that p and p∗ transform respectively in representations of k and k∗ but are not sub-

algebras of su(2, 1). For later reference, let us also give another useful decomposition of

su(2, 1), known as the algebraic Iwasawa decomposition in terms of vector spaces

su(2, 1) = k ⊕ a ⊕ n+, (2.10)

3We refer the reader to [25, 41, 42] for introductions on real forms of complex Lie algebras.

– 5 –
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where a is the non-compact part of the Cartan subalgebra h ⊂ su(2, 1) and n+ is the

nilpotent subspace of upper-triangular matrices. The subspace b+ = a ⊕ n+ is known as

the standard Borel subalgebra.

At the group level, we then have the corresponding maximal compact subgroup

K = SU(2) × U(1) (2.11)

and non-compact subgroup

K∗ = SL(2,R) × U(1) . (2.12)

Similarly, the subspaces p and p∗ correspond to the two coset spaces

C = G/K =
SU(2, 1)

SU(2) × U(1)
and C∗ = G/K∗ =

SU(2, 1)

SL(2,R) × U(1)
. (2.13)

Physically, C and C∗ arise, respectively, as the moduli spaces of scalars upon reduction to

D = 3 of the Einstein-Maxwell Lagrangian on a space-like or a time-like circle.

The coset space C = G/K is a Riemannian symmetric space of dimension dim(G) −
dim(K) = 4, matching the combined number of degrees of freedom contained in the metric

and the Maxwell field in D = 4. To describe a coset model on this space one can choose a

map V : M3 → G/K in a fixed gauge, that transforms under global transformations g ∈ G

as V(x) → k(x)Vg−1, where k(x) ∈ K is a local compensating transformation required to

restore the chosen gauge for the coset representative.

A manifestly SU(2,1)-invariant Lagrangian can now be constructed using the Maurer-

Cartan form dVV−1 as follows. Its projection

P =
1

2

(
dVV−1 − θ(dVV−1)

)
∈ p (2.14)

along the coset transforms K-covariantly under the global G action as P → kPk−1 and

the (invariant) trace of its square can be used as a G-invariant Lagrangian that is second

order in derivatives:

L =
√

|h|hµν(Pµ|Pν), (2.15)

where hµν is the metric on M3. To make this concrete, we shall extend the decomposi-

tion (2.10) to the group level using the Iwasawa theorem, so that

SU(2, 1) = KAN, (2.16)

where A is the abelian group with the Lie algebra a and N is the nilpotent group cor-

responding to the subspace n+. This ensures that we may choose a coset representative

V ∈ AN of upper-triangular matrices, traditionally referred to as the “Borel gauge”. As

a consequence of this gauge choice, the coset element V can be parametrized using four

scalar fields (coordinates on G/K), to be illustrated in detail below.

On the other hand, the coset space C∗ = G/K∗ is a homogeneous space of dimension

dim(G) − dim(K∗) = 4, but is no longer a Riemannian manifold. Rather, it has signature

(2, 2), and is usually referred to as a “pseudo-Riemannian” symmetric space [40]. The

– 6 –
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general construction of an SU(2,1)-invariant coset model discussed above is still applicable,

although in this case the global Iwasawa decomposition is no longer valid.

For both choices of subgroup, K and K∗, there is a Noether current

J µ =
√

|h|hµνV−1PνV, (2.17)

associated to the global G symmetry. We will see later that its values “at infinity” for

V describing a half-BPS solutions can be related to the four charges describing the most

general such solution.

2.3 Solutions with space-like Killing vector

To give a flavor of the relevance of coset models, we will first quickly consider the case

of solutions for which the preserved Killing vector κ is space-like. After choosing suitable

coordinates so that κ = ∂x, the reduction of the Einstein-Maxwell Lagrangian (2.1) yields

in three dimensions, after dualisation, an Einstein plus scalar Lagrangian, with scalar part

given by:

L̃scal = −
√
−h
4

(
1

2
∂µφ∂

µφ+ 2 eφ(∂µχe ∂
µχe + ∂µχm ∂

µχm)

+ e2φ(∂µψ +
√

2χm ∂µχe −
√

2χe ∂µχm)2
)

.

(2.18)

This reduced Lagrangian contains a dilaton φ and three axions: χe coming from the

component Ax of the Maxwell vector potential, χm coming from the dualisation of the

Maxwell vector potential in three dimensions and ψ arising from the dualization of the

graviphoton. These four scalar fields parametrize the coset space C = SU(2, 1)/(SU(2) ×
U(1)) [22, 43]. More concretely, the scalar dynamics given by (2.18) is equivalent to a

non-linear σ-model describing maps V from M3 to the homogeneous space C as described

above. This map V is the composition of a map into the tangent space of C together with

the exponential map from this tangent space to the coset. Naturally parametrized by the

four scalar fields, it is therefore given by the expression

V = e
1
2
φh4 e

√
2χe e4+

√
2χm e5+

√
2ψ e4,5

=






e
φ

2 e
φ

2 (
√

2χe + i
√

2χm) e
φ

2 (χ 2
e + χ 2

m + i
√

2ψ)

0 1
√

2χe − i
√

2χm

0 0 e−
φ

2




 ,

(2.19)

where h4, e4, e5 and e4,5 (see (B.9)) are the generators of the Borel subalgebra b+ = a⊕n+.4

The scalar fields here depend on the coordinates xµ of M3.

2.4 Solutions with time-like Killing vector

Let us now repeat this discussion in a little bit more detail in a case that will be more

interesting for us, namely BPS solutions. These solutions preserve a time-like Killing vector,

4Recall from the previous section that the Borel subalgebra b of a non-split real form does not contain

the full Cartan subalgebra h but only its non-compact part a (see appendix B for more details).

– 7 –
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which is most easily seen by considering the fact that a BPS-solution necessarily preserve

a Killing spinor ǫ. Forming the supersymmetry generator Q = Qµǫµ, the supersymmetry

algebra — in whichQ squares to the generator of time-translation — shows that the solution

must be preserved under time-translation. The set of single centered BPS-solutions is a

subset of a general set of generalized Reissner-Nordström black hole-like solutions to the

equations of motion (2.2) and (2.3) with mass m, NUT charge n, and electric and magnetic

Maxwell charges q and h. This solution can be written as [21]

ds2 = − r̃
2 − n2 − 2m r̃ + q2 + h2

r̃2 + n2
( dt+ 2n cos θ dφ )2 (2.20)

+
r̃2 + n2

r̃2 − n2 − 2m r̃ + q2 + h2
dr̃2 + (r̃2 + n2)(dθ2 + sin2 θ dφ2) ,

At =
q r̃ + nh

r̃2 + n2
, Aφ =

2n q r̃ − h (r̃2 − n2)

r̃2 + n2
cos θ . (2.21)

For our purpose it is convenient to introduce isotropic coordinates defined by r̃ = r +m,

in which the metric in (2.20) becomes

ds2 = − λ(r)

R2(r)
(dt+ 2n cos θ dφ )2 +

R2(r)

λ(r)
dr2 +R2(r)(dθ2 + sin2 θ dφ2) . (2.22)

Here the functions λ(r) and R2(r) are given by

λ(r) = r2 − ∆2, ∆2 ≡ m2 + n2 − q2 − h2, (2.23)

R2(r) = r2 + 2mr +m2 + n2. (2.24)

We will be interested in the subclass of solutions (2.20) which are BPS, namely the

ones which preserve 1/2 of the supersymmetry. These solutions are characterised by the

following BPS condition among the four charges [20] (see also [21]):

∆2 = 0 ⇔ m2 + n2 = q2 + h2. (2.25)

Using (2.23) and (2.25), we have λBPS = r2 and the BPS metric is:

ds2BPS = − r2

R2(r)
(dt+ 2n cos θ dφ )2 +

R2(r)

r2

3∑

a=1

dx2
a, (2.26)

where the xa’s are the flat Euclidean space coordinates. In the particular case n = 0, one

finds again the extremal Reissner-Nordström black hole (or an extremal 0 brane in four

dimensions) characterised by the harmonic function 1+ m
r

(see for instance [44]). Note that

upon dimensional reduction of (2.20) on time the three-dimensional Euclidean metric is

ds23D = dr2 + (r2 − ∆2)dΩ2
2. (2.27)

When the BPS condition (2.25) is fulfilled, the line element (2.27) is just the line element

for three-dimensional Euclidean flat space in spherical coordinates.

This solution is an example of a solution to the Einstein-Maxwell system which allows

for a time-like Killing vector. These solutions are referred to as stationary. More generally,
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choosing suitable coordinates, in this case so that κ = ∂t, a convenient metric ansatz for

this type of solutions is5

ds24D = −e−φ(dt+ ω)2 + eφds23D , (2.28)

where ds23D is the invariant line element on M3 corresponding to the pullback metric g3 of

the four dimensional metric g to M3.
6 Here we see explicitly the origin of the graviphoton,

given as the 1-form ω. The dynamics of these particle-like solutions is now governed by (2.1)

reduced on the orbits of the Killing vector κ. Explicitly

L′
3D =

1

4

√
g3

[ (

R3 −
1

2
∂µφ∂

µφ+
1

4
e−2φ F 2

(2)

)

−
(
e−φF̃ 2

(2) − 2 eφ ∂µχe ∂
µχe
)
]

, (2.29)

where F(2) = dω and F̃(2) = dA− dχe ∧ ω. After dualization of the two field strengths,

F̃ λν = −ǫ
µλν

√
g3
eφ ∂µχm , (2.30)

F λν =
ǫµλν√
g3
e2φ
(

2 (χm ∂µχe − χe ∂µχm) +
√

2 ∂µψ
)

, (2.31)

with ǫrθφ = −1, we can rewrite the three-dimensional Lagrangian (2.29) using only the

metric in three dimensions and the scalar fields φ, χe, χm and ψ. We hence get

L3D =
1

4

√
g3

[

R3 −
1

2
∂µφ∂

µφ+ 2 eφ (∂µχe ∂
µχe + ∂µχm ∂

µχm)

− e2φ (∂µψ +
√

2χm ∂µχe −
√

2χe ∂µχm)2
]

.

(2.32)

One sees directly that χe and χm appear completely symmetrically. The duality between

the two gravitational scalars is less apparent, but is in fact present as we will see in section 3.

Note the change of signs in front of the kinetic terms for the Maxwell scalars in comparison

with (2.18), revealing that the two scalar actions for space-like and time-like reductions are

related by a “Wick rotation” of the Maxwell scalars χe and χm.

The scalar part of (2.32) can now be identified with a non-linear σ-model constructed

on the coset C∗ = SU(2, 1)/(SL(2,R) × U(1)), where the change in the quotient group has

its origin in the different kinetic terms. Hence the construction of this theory is the same

5In the original work on time-like reductions to D = 3 [40], it was noted that by further assuming

spherical symmetry for the three-dimensional metric g3, the Einstein-scalar Lagrangian in D = 3 describes

the geodesic motion of a fiducial particle moving on (a cone over) the moduli space C∗ = SU(2, 1)/(SL(2, R)×

U(1)). The dynamics of the particle on C∗ thus corresponds to motion in the space of stationary, spherically

symmetric solutions to Einstein-Maxwell theory. This point of view has been extended recently in [45, 46]

in the context of solution-generating techniques. Moreover, for the special case of BPS solutions this

philosophy was elaborated upon in [47, 48], where it has been shown that the classical phase space of the

particle dynamics coincides with the six-dimensional coset space Z = SU(2, 1)/(U(1) × U(1)) (known as

the twistor space of C, see e.g. [49]). This result has been used as a starting point for quantizing BPS black

hole solutions by (radial) quantization of the particle dynamics on C∗ [50].
6In the case of extremal solutions this will give a flat g3 metric, and for extremal solutions with horizon

this will generally give M3 a topology homeomorphic to R
3\{0}.
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as the one used for space-like reduction, except that when deriving the coset Lagrangian

we replace the Cartan involution θ by the temporal involution Ω4 (introduced above and

defined in appendix B.4 ), having as fixed subalgebra k∗ = sl(2,R) ⊕ u(1).

Generally we still write maps V in the Borel gauge by using the expression (2.19). The

solution (2.20) and (2.21) in terms of our four scalar fields can then be rewritten as:

φ(r) = ln

(
(r +m)2 + n2

r2

)

,

χe(r) =
hn+ q(m+ r)

(r +m)2 + n2
,

χm(r) =
nq − h(m+ r)

(r +m)2 + n2
,

ψ(r) = −
√

2nr

(r +m)2 + n2
.

(2.33)

Using the Noether current of the coset Lagrangian, we can now relate the three-dimensional

“conserved” σ-model quantities to the four-dimensional charges. At infinity (r → ∞) the

coset element V parametrized by (2.33) tends towards the identity element 1 of SU(2, 1),

implying that J → P when r → ∞.

Furthermore, one can compute using (2.17) (see also [51])

Q =

∫

S∞

J =

∫

S∞

P

= −mh4 + n (e4,5 − f4,5) −
q√
2

(e4 − f4) +
h√
2

(e5 + f5)

=







−m i(h+iq)√
2

in
ih+q√

2
0 −ih−q√

2

−in −ih+q√
2

m






,

(2.34)

where m,n, q and h are the four-dimensional charges. For the derivation of the elements

in p∗ which is the orthogonal complement of k∗ with respect to the Killing form, see

appendix B.

The form (2.34) is preserved by coset transformations belonging to K∗ since J = P ∈ p∗

and the reductive homogeneous space decomposition ensures that [k∗, p∗] ⊂ p∗. As we will

argue below, the transformations from K∗ preserve the asymptotic conditions on the BPS

solution and therefore act (linearly) on the four BPS charges. The transformations that

belong to K∗ also preserve the asymptotic condition V → 1 as r → ∞. The SU(2, 1)

transformations that are not part of K∗ violate this asymptotic condition on the coset

element and also map the Noether current J out of p∗. This makes the identification of

the four BPS charges from the Noether current less evident. However, as the physical

fields are related to the scalar fields of the coset C∗ (mostly) by duality relations these

transformations do preserve the asymptotic conditions on the physical fields. In fact, we

will show below that Iwasawa decomposable transformations of SU(2, 1) outside K∗ act as

gauge transformations on the physical fields and do not change the BPS charges. For this
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reason it will turn out to be sufficient to use the Noether charges from (2.34) and their

transformation under K∗ to find the orbits of BPS solutions under SU(2, 1).

3 Action of SU(2, 1) on BPS solutions

Let us now proceed to discuss the action of SU(2,1) on the stationary solution (2.20).

The σ-model is G-invariant by construction and acting with SU(2, 1) on the coset with

the natural action from the right, gives an action on the maps V. We thus generate

new solutions when lifting the transformed V ′ back to four dimensions, using the explicit

form (2.19) of V and the dualisation relations (2.30) and (2.31). Furthermore, we know that

every single centered extremal solution is uniquely fixed by the values of the scalar fields

at infinity, in terms of the four charges m, n, q and h. This induces a representation of

SU(2, 1) on these four charges. Now, as the coset space C∗ in the case of stationary solutions

is not a Riemannian symmetric space, there is not a single coordinate system covering the

whole coset [51]. However, our σ-model describes maps to a given coordinate patch. If

the action of G takes us outside of this patch, we have no way of relating the new V ′ to

the four-dimensional fields. Constructing our coordinate system on C∗ via the Borel gauge

(i.e. treating V as the composition of the exponential map and a map from M3 to a⊕ n+),

we will only consider the subspace of G where the elements are decomposable in Iwasawa

form. These elements are exactly the ones that preserve our coordinate patch. Hence we

can consider the action of SU(2, 1) in three different cases, one for each of the subgroups

N,A and K∗ in the local Iwasawa decomposition.7 Our four-dimensional interpretation will

differ in all of these cases. Solution generation in the case of Einstein-Maxwell theory has

been considered also in [22, 51, 53].

3.1 Action of the nilpotent generators

Let us begin with the analysis of the nilpotent group N. As elements in N do not take us

outside of the Borel gauge, the analysis of how the scalar fields change is simply done by

multiplying V described by (2.19) from the right by elements in the group N of nilpotent

elements, i.e. if n ∈ N, V → V ′ = Vn−1.

As described in appendix B.3, the Lie algebra n+ of N is generated by the three

nilpotent generators e4, e5 and e4,5. Under the three corresponding nilpotent 1-parameter

subgroups (with real parameters α, β and γ), the scalar fields given by (2.33) transform as

follows; Under the group generated by e4:

χe → χe −
1√
2
α ,

ψ → ψ − αχm.

(3.1)

Under the group generated by e5,

χm → χm − 1√
2
β ,

ψ → ψ + βχe.

(3.2)

7A similar analysis was recently done for five-dimensional minimal supergravity which gives rise to a G2

σ-model when this theory is reduced on two commuting Killing vectors [52].
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Finally, under the group generated by e4,5,

ψ → ψ − 1√
2
γ. (3.3)

Looking at the dualisation relations (2.30) and (2.31) we see that these transformations

simply vanish when lifting the fields back to four dimensions. We can hence interpret the

symmetry group N as appearing from realizing an inherent redundancy in the formulation of

the three-dimensional theory, and is therefore not visible in four dimensions. Equivalently,

the action of the nilpotent group N corresponds to gauge transformations.

3.2 Action of the non-compact Cartan generator

The action of the abelian group A, with Lie algebra a, is generated by the non-compact

Cartan generator h4 ∈ p∗. The action of A, parametrized by d ∈ R is

φ→ φ− 2d ,

χe → edχe ,

χm → edχm ,

ψ → e2dψ .

(3.4)

Lifting this transformation back into the four-dimensional metric and Maxwell potential,

we see that it is just a coordinate transformation coming from a rescaling of the time and

space coordinates t → edt and r → e−dr. The solution is therefore unchanged.

3.3 Action of K∗

We have now discussed from a physical perspective why the generators in AN ⊂ G act

trivially on a given solution. By restricting to transformations that stay in our coordinate

patch on G/K∗, what is left to consider is now the non-compact group K∗. It turns out

that it is K∗ that realizes electromagnetic and gravitational duality. From the expression

of the Noether charge (2.34), we see that K∗ transforms non-trivially the set of conserved

four-dimensional charges, and it is natural to ask precisely how this action is realized. This

is done by extracting the transformed charges as the coefficients in front of the generators

of p∗ just as in the expression (2.34). The algebra k∗ of K∗ is generated by the elements

u, and ti, i = 1, 2, 3, where the ti’s generate an sl(2,R), commuting with u. The definition

of k∗ is described in appendix B.4. Treating these four Lie algebra generators separately,

as we did in the case of N above, we find that the 1-parameter subgroup generated by u,

with parameter a generates the transformation








m

n

q

h








→








cos(a) sin(a) 0 0

− sin(a) cos(a) 0 0

0 0 cos(a) sin(a)

0 0 − sin(a) cos(a)















m

n

q

h







, (3.5)
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under finite transformations generated by t1 with parameter b,








m

n

q

h








→








cos(b) − sin(b) 0 0

sin(b) cos(b) 0 0

0 0 cos(b) sin(b)

0 0 − sin(b) cos(b)















m

n

q

h







, (3.6)

under t2 with parameter c,








m

n

q

h








→








cosh(c) 0 − sinh(c) 0

0 cosh(c) 0 − sinh(c)

− sinh(c) 0 cosh(c) 0

0 − sinh(c) 0 cosh(c)















m

n

q

h







, (3.7)

and finally under t3 with parameter d,








m

n

q

h








→








cosh(d) 0 0 sinh(d)

0 cosh(d) − sinh(d) 0

0 − sinh(d) cosh(d) 0

sinh(d) 0 0 cosh(d)















m

n

q

h







. (3.8)

We see here that K∗ realizes a linear representation R on the charges, identified with

R = 21 ⊕ 2−1 (decomposed with respect to sl(2,R) ⊕ u(1), where the subscript indicates

the charge under U(1)), acting as two boosts and two rotations. In particular we see that

u+ t1 = 2
3 h5 acts as a rotation of electric and magnetic charges. This will be in agreement

with further discussion in section 4, considering the commutation relations (see (4.25))

[h5, r
a] = 3 r̃a , [h5, r̃

a] = −3 ra , (3.9)

and the identification in the dictionary (table 3) stating that the generators ra and r̃a

correspond to the electric and magnetic parts of the Maxwell field. We can also see that

u− t1 acts as gravitational duality rotation (see for instance [21, 33]).

3.4 Describing K∗ as a subgroup of SO(2, 2)

From group theoretic considerations one can derive the above conclusions using rather

general arguments. Let ∆2 : R
4 → R be the homogeneous quadratic form defined by

∆2(v) = m2 + n2 − q2 − h2, (3.10)

for v = (m,n, h, q) ∈ R
4, and let

B = {v ∈ R
4\{0};∆2(v) = 0} (3.11)

be the set of zeros of ∆2. We know from section 2.4 that B is isomorphic to the set of

single centered BPS-solutions via the maps (2.33). The set B is by definition preserved

by the group S = SO(2, 2). The question of how K∗ acts on the set of charges can then

be transformed into the question of how K∗ embeds into S as we know from the previous
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section that K∗ preserves the BPS-condition. The Lie algebra isomorphism so(2, 2) ∼=
sl(2,R) ⊕ sl(2,R) induces the Lie group isomorphism SO(2, 2)0 ∼= SL(2,R) × SL(2,R).

Here SO(2, 2)0 indicates the component connected to the identity. We also know that

sl(2,R) contains two non-compact generators and one compact. Comparing with K∗ whose

Lie algebra we know contains two compact generators and two non-compact generators,

forming k∗ = sl(2,R) ⊕ Ru, the embedding I : K∗ →֒ S is therefore given by lifting the

natural (up to automorphisms) differential dIe : k∗ → so(2, 2) at the identity e ∈ K∗,
mapping compact generators to compact generators. More concretely, if bi=1,...6 are the

generators of so(2, 2) (for definition of the algebra so(2, 2) see appendix C),

dIe(ti) = bi ,

dIe(u) = b4 ,
(3.12)

where b1, b2 and b3 generate one sl(2) summand in so(2, 2), and b4 is the compact generator

in the other. The normalization is not fixed, but is up to redefinition of the generators of

the two Lie algebras. By looking at the action of I(K∗), we now see that b1 − b4 generates

an Ehlers U(1)-group rotating m,n into each other, b1 + b4 generates a U(1) rotating q, h

and the non-compact b2 and b3 act as boosts. This is in complete agreement with the

analysis in section 3.3 above.

3.5 The space of BPS solutions

Now as we know how SU(2, 1), or more precisely, how K∗ acts on the set of single centered

BPS-solutions we can ask the question about duality orbits. Namely, starting with one

BPS-solution, can we generate all the others by acting with K∗? If SU(2, 1) is to be

considered as a spectrum generating group [54], this must clearly be the case. Here the fact

that K∗ is non-compact will be of crucial importance. In fact, we have the following result.

Theorem 3.1. The group K∗ acts transitively on the set of single centered BPS-solutions,

so that B ∼= K∗/R.

Proof. Consider the set B. As it is defined by the homogeneous form ∆2, we can consider

the projective descendant of B, namely PB = {v ∈ PR
3;∆2(v) = 0}, where PR

3 is

the three-dimensional projective space. In analogy with the isomorphism SO(2, 2)0 ∼=
SL(2,R) × SL(2,R), we get the isomorphism PB ∼= PR

1 × PR
1 via a bijection F : PR

1 ×
PR

1 → PB given by the expression

F ([x0, x1], [y0, y1]) = [x0y0 + x1y1, y0x1 − y1x0, x0y0 − x1y1, x0y1 + x1y0]. (3.13)

The action of I(K∗) on B descends to an action on PB, and hence to an action on PR
1×PR

1

by F . Furthermore, PR
1 ∼= S1 via the map f([x0, x1]) = arctan(x0/x1) (schematically), so

that we have a diffeomorphism PB ∼= S1×S1. In fact, the Lie subgroup U(1)×U(1) ⊂ K∗,
generated by the subalgebra Rt1 ⊕ Ru, acts transitively on these two circles by complex

multiplication. We conclude that K∗ acts transitively on PB. Furthermore U(1) ×U(1) ⊂
K∗ contains an element acting as v → −v for v ∈ B. Let us now turn to the action

of K∗ on B. Due to the above analysis, it is sufficient to consider charge vectors with
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all charges positive and equal. As K∗ contains non-compact generators it is now in fact

possible to reach all these charge vectors, being given one. The explicit 1-parameter Lie

subgroup is S(λ) = exp
(
− λb2

)
, acting so that (k, k, k, k) 7→ expλ(k, k, k, k). This proves

our assertion, noting that the 1-parameter subgroup stabilizing a diagonal vector (k, k, k, k)

is Stab(c) ≡ exp c(b1 + b3) ∼= R.

If we consider this proof from the physical point of view, it may seem surprising that

K∗ is transitive on PB by only using b1 and b4 as these do not mix gravitational and electro-

magnetic degrees of freedom. This is in fact true as for four charges m,n, q, h to fulfill the

BPS-condition we need both non-zero gravitational and non-zero electromagnetic charges

and to generate new solutions we can treat these two sectors separately. Furthermore, we

can compare the result of Theorem 3.1 with the expression for the 1/2-BPS strata in [51],

(equation (5.5)) and see that the two results are in full agreement.

3.6 The quantum moduli space and string theory

Our analysis so far has been performed purely at the classical level. In the full quantum the-

ory it is expected that the classical moduli space is affected by quantum corrections. These

can be both of perturbative and of non-perturbative origin and they are not understood

generally. The only exceptions are cases where there are additional duality symmetries

that constrain them.

In general, electric and magnetic charges are subject to quantization in the sense of

Dirac. For example, the 28 + 28 electric and magnetic charges in type II string theory on

a six-torus break the classical continuous E7(7) symmetry group to the discrete subgroup

E7(7)(Z) [55]

E7(7)(Z) = E7(7)(R) ∩ Sp(56,Z) , (3.14)

where Sp(56,Z) is the symmetry group of the 56-dimensional symplectic lattice of electric

and magnetic charges, associated with the 28 abelian vector fields in D = 4.

It has furthermore been speculated that after further reduction of this maximal super-

gravity theory on a space-like circle S1 to D = 3, the duality group should be enhanced to

some discrete subgroup G(Z) of the classical hidden symmetry group E8(8)(R) [55]. How-

ever, in three dimensions it is by no means clear how to define the group G(Z), since there

are no vector fields whose associated charge lattice provides a natural integral structure.

Moreover, in D = 3 one is forced to take into account gravitational effects since the moduli

space includes components of the four-dimensional metric. It was recently argued that the

three-dimensional duality groups that arise in this way do not act nicely on the gravita-

tional part of the moduli space, and there is therefore no natural candidate for a discrete

subgroup G(Z) which should be preserved in the quantum theory in D = 3 [51].

Returning to the N = 2 theory discussed in this paper, the situation is not very differ-

ent at face value. However, we propose that the c-map [56–58] improves the situation. The

c-map can be thought of as a type of T -duality in D = 3, where it exchanges the moduli

space obtained from the reduction of the Einstein-Maxwell sector with that obtained by

the reduction of a universal hypermultiplet sector that can be added to the N = 2 theory in
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D = 4 and that is present in any Calabi-Yau reduction of type IIA superstring theory [56].8

The point here is that the universal hypermultiplet in D = 4 is also described classically by

a coset space SU(2, 1)/SU(2)×U(1). The quantum corrections to this universal hypermul-

tiplet moduli space are not fully understood, but recently [59] it has been proposed that

a promising candidate for the discrete group G(Z) in this case is the so-called the Picard

modular group SU(2, 1; Z[i]), whose generators can be given an intuitive physical inter-

pretation in terms of Peccei-Quinn symmetries, electric-magnetic duality and S-duality.

Assuming this to be the correct quantum duality group of the universal hypermultiplet

and the validity of the c-map at the quantum level would imply that the correct moduli

space and quantum symmetry group of Einstein-Maxwell theory with one Killing vector

is also encoded in the Picard group. A further verification of these claims is outside the

scope of this paper. See [59] for more detailed discussions of these issues.

4 On su(2, 1)+++

So far we have analyzed the role of the duality group SU(2,1) for understanding BPS

solutions in N = 2 supergravity in four dimensions. This was done by performing a

dimensional reduction to three dimensions, where the Lagrangian corresponds to Einstein

gravity coupled to scalars parametrizing a Riemannian coset space C in the case of space-

like reduction, and a pseudo-Riemannian coset space C∗ in the case of time-like reduction.

Motivated by this, it is interesting to assume that the Einstein-Maxwell theory exhibits

a hidden nonlinearly realized Kac-Moody symmetry group SU(2,1)+++, formally arising in

the reduction to zero dimensions [4], but as a conjectured symmetry of the full model [8].

The associated Kac-Moody algebra su(2, 1)+++ can be obtained by adding three nodes

α1, α2 and α3 to the Tits-Satake diagram of su(2, 1) displayed in figure 1. The Tits-Satake

diagram of su(2, 1)+++ is given in figure 2b.

In this section, we will give some basic properties of su(2, 1)+++, and ex-

plain the construction of a non-linear σ-model on the infinite-dimensional coset space

SU(2, 1)+++/K∗+++, generalizing the finite-dimensional σ-model on G/K∗ considered in

section 2.2. Here K∗+++ is the subgroup of SU(2, 1)+++ consisting of those generators

which are pointwise fixed by the temporal involution Ω1, defined such that we may identify

the index 1 by a time coordinate. To this end we shall slice up the adjoint representation

of su(2, 1)+++ in a level decomposition, suitable to reveal the field content of the bosonic

part of pure N = 2 supergravity. We will also define the action of a general temporal

involution Ωi on the generators of su(2, 1)+++.

In the same way as su(2, 1) is a real form of the complex Lie algebra A2 = sl(3,C), the

Kac-Moody algebra su(2, 1)+++ is a real form of the complex algebra A+++
2 . To construct

su(2, 1)+++ it is therefore illuminating to first consider some relevant properties of A+++
2 .

4.1 Generalities on A+++
2

The rank 5 Kac-Moody algebra A+++
2 can be obtained by adjoining three extra nodes

to the Dynkin diagram of the finite-dimensional Lie algebra A2. The resulting Dynkin

8We ignore, i.e. set to zero, the effects of the other hyper- and vectormultiplets that arise in the reduction.
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diagram is displayed in figure 2a, where the nodes α4 and α5 correspond to the un-

derlying A2-algebra, while α1, α2 and α3 provide the extension to A+++
2 . From the

Dynkin diagram we may construct the associated Kac-Moody algebra by introducing five

triples of generators {Ei, Fi,Hi}, i = 1, . . . , 5, known as Chevalley generators, such that

each triple generate an sl(i)(2,C)-subalgebra corresponding to the nodes 1, . . . , 5 in the

Dynkin diagram. The Chevalley generators are subject to the commutation relations (no

summation on repeated indices)

[Hi, Ej ] = AijEj , [Hi, Fj ] = −AijFj ,
[Ei, Fj ] = δijHj, [Hi,Hj] = 0, (4.1)

where Aij is the Cartan matrix encoding the structure of the Dynkin diagram in figure 2a.

The sets {Ei} and {Fi} correspond, respectively, to positive and negative step-operators

which generate the nilpotent subspaces ñ+++
+ and ñ+++

− , modulo the so-called Serre rela-

tions (see [60]). In addition, the set {Hi} generates the Cartan subalgebra h̃+++, providing

the full Kac-Moody algebra with a triangular structure (direct sums of vector spaces)9

A+++
2 = ñ+++

− ⊕ h̃+++ ⊕ ñ+++
+ . (4.2)

In the following subsection, we shall use these properties of A+++
2 to define the non-split

real form su(2, 1)+++ from the Tits-Satake diagram in figure 2b.

4.2 Definition of su(2, 1)+++

The Tits-Satake diagram in figure 2b differs from the standard Dynkin diagram of A+++
2

(see figure 2a) by the extra decoration afforded by the double arrow connecting the nodes

α4 and α5.
10 This implies that the A2-part of the diagram is transformed into the non-split

real form su(2, 1) of A2 such that on the simple roots one has

σ(α4) = α5, σ(α5) = α4 , (4.3)

where σ is the conjugation which fixes the real form. More details on su(2, 1) can be found

in appendix B.

Analogously to the construction of A+++
2 in section 4.1, to construct su(2, 1)+++ we

extend the Tits-Satake diagram of su(2, 1) (see figure 1) with three non-compact simple

roots αj (j = 1, . . . , 3) such that

σ(αj) = αj (j = 1, 2, 3) . (4.4)

9 The different subspaces of A+++
2 are denoted with a ˜ to distinguish them from the different subspace

of su(2, 1)+++ to be introduced below.
10We note that the theory of real forms of Kac-Moody algebras has one important difference to the

theory of real forms for finite-dimensional algebras. Since not any two Borel subalgebras are conjugate in

the Kac-Moody case there are different classes of real forms. Indeed, the standard upper triangular and

lower triangular Borel subalgebras, b+ and b−, cannot be conjugated into one another [61] and depending

on whether the involution fixing the real form maps b+ → b+ or b+ → b− the real form is called almost

split or almost compact [27–29]. Almost split algebras are under better control and the fact that here we

have an involution, given by the arrow in the diagram in figure 2b, acting only on a finite-dimensional

subalgebra ensures that we are constructing an almost split real form.
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α1 α2 α3

α4

α5

a b

α1 α2 α3

α4

α5

Figure 2. a: Dynkin diagram of A+++

2 . b: Tits-Satake diagram of su(2, 1)+++.

The action of σ can be extended from the space of roots to the entire algebra. For σ

this yields

σ(Hj) = Hj, σ(Ej) = Ej , σ(Fj) = Fj ,

σ(H4) = H5, σ(E4) = E5, σ(F4) = F5 ,

σ(H5) = H4, σ(E5) = E4, σ(F5) = F4 ,

(4.5)

where {Hi, Ei, Fi} are the Chevalley generators of A+++
2 introduced in section 4.1. The

generators of su(2, 1)+++ then correspond to the subset of A+++
2 -generators left invariant

under σ. They can be written in terms of the Chevalley generators of A+++
2 as follows

e1 = E1, f1 = F1, h1 = H1 ,

e2 = E2, f2 = F2, h2 = H2 ,

e3 = E3, f3 = F3, h3 = H3 ,

e4 = E4 + E5, f4 = F4 + F5, h4 = H4 +H5 ,

e5 = i (E4 − E5), f5 = i (F4 − F5), h5 = i (H4 −H5) .

(4.6)

We stress that for these generators there is no set of standard Chevalley-Serre relations

defining the commutators between these elements.

The involution θ that fixes the maximal compact subalgebra k+++ of su(2, 1)+++ is

defined by

θ(Hj) = −Hj θ(Ej) = −Fj , θ(Fj) = −Ej ,
θ(H4) = −H5 θ(E4) = −F5, θ(F4) = −E5 ,

θ(H5) = −H4 θ(E5) = −F4, θ(F5) = −E4 .

(4.7)

The Cartan subalgebra of su(2, 1)+++ is given by

h+++ =

5⊕

i=1

Rhi, (4.8)
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of which h1, . . . , h4 are non-compact, while h5 is compact. The generators h1, . . . , h4 are

diagonalizable over the real numbers, and generate the non-compact part a+++ of the full

Cartan subalgebra h+++.

Recall from section 2.2 that the construction of the σ-model on the coset space

SU(2, 1)+++/K∗+++ will only involve the non-compact Cartan generators by virtue of

the algebraic Iwasawa decomposition

su(2, 1)+++ = k∗+++ ⊕ a+++ ⊕ n+++, (4.9)

where k∗+++ is the non-compact subalgebra of su(2, 1)+++ corresponding to the group

K∗+++, and n+++ is the nilpotent subalgebra generated by the set {ei}.

4.3 Level decomposition

In section 5.1, we will give the correspondence between the field content of the bosonic

part of pure N = 2 supergravity and the infinite-dimensional algebra su(2, 1)++. To this

end, we will perform a decomposition of the adjoint representation of su(2, 1)+++ into

representations of an sl(4,R) subalgebra defined by the nodes α1, α2 and α3 in figure 2b.

All step operators may then be written as irreducible tensors of the sl(4,R) subalgebra.

Their symmetry properties are fixed by the Young tableaux describing the irreducible

representations appearing at a given level.

4.3.1 Level decomposition of A+++
2

In order to understand the level decomposition of su(2, 1)+++, we must first consider the

level decomposition of the complex algebra A+++
2 under a A3

∼= sl(4,R) subalgebra. This

level decomposition of A+++
2 up to level ℓ = (ℓ1, ℓ2) = (2, 2) can be obtained for example

from the SimpLie program [62] and it is shown in table 1 . The levels ℓ1 and ℓ2 are

respectively associated to the roots α4 and α5 in figure 2a. This level decomposition will

induce a grading of A+++
2 into an infinite set of finite-dimensional subspace g+++

(ℓ1,ℓ2)
such that

A+++
2 =

⊕

(ℓ1,ℓ2)

g+++
(ℓ1,ℓ2)

, (4.10)

where the levels ℓ1 and ℓ2 are either both non-positive or both non-negative.

At level ℓ = (0, 0), we have a gl(4,R) = sl(4,R) ⊕ R algebra generated by Ka
b (a, b =

1, . . . , 4), as well as an extra scalar generator T which enlarges the gl(4,R) algebra by the

addition of a R-factor. The commutation relations at this level are

[Ka
b,K

c
d] = δcb K

a
d − δad K

c
b ,

[T,Ka
b] = 0 ,

(4.11)

and the bilinear forms reads

(Ka
b|Kc

d) = δadδ
c
b − δab δ

c
d, (T |T ) =

2

9
, (T |Ka

b) = 0 . (4.12)

The positive level generators are obtained through multiple commutators between the

generators Ra and R̃a on levels (1, 0) and (0, 1) respectively. They transforms as gl(4,R)
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(ℓ1, ℓ2) sl(4,R) Dynkin labels Generator of A+++
2

(0, 0) [1, 0, 1] ⊕ [0, 0, 0] Ka
b

(0, 0) [0, 0, 0] T

(1, 0) [0, 0, 1] R a

(0, 1) [0, 0, 1] R̃ a

(1, 1) [0, 0, 2] S s1s2

(1, 1) [0, 1, 0] R a1a2

(2, 1) [0, 1, 1] R a0|a1a2

(1, 2) [0, 1, 1] R̃ a0|a1a2

(2, 2) [1, 0, 1] R a0|a1a2a3

(2, 2) [0, 2, 0] R a1a2|a3a4

(2, 2) [0, 1, 2] R s1s2|a3a4
...

...
...

Table 1. Level decomposition of A+++

2 under sl(4,R) up to level (2, 2). The indices ai are

antisymmetric while the indices si are symmetric. Note that the generators from the level (2, 1)

with mixed Young symmetries are subject to constraints.

tensors in the obvious way. The level (1, 1) generators Rab and Sab are obtained through

the commutator
[

Ra, R̃b
]

= Rab + Sab , (4.13)

where the individual projections are:

Sab =
[

R(a, R̃b)
]

, Rab =
[

R[a, R̃b]
]

. (4.14)

The Chevalley generators of A+++
2 and its relevant commutators and bilinear forms up to

level (1, 1) are given in appendix D.1. Negative step operators are defined with lower indices

such that the bilinear form evaluated on a positive step operator and its corresponding

negative step operator is positive, e.g. (Ra|Rb) = δab .

4.3.2 Level decomposition of su(2, 1)+++

We shall now apply the construction of su(2, 1)+++ to the level decomposition of A+++
2 .

In this context, we define the level L such that L = ℓ1 + ℓ2 and such that the grading of

the su(2, 1)+++ algebra is written as

su(2, 1)+++ =
⊕

L

g+++
L . (4.15)

At level zero, we have the gl(4,R)-subalgebra associated to the nodes α1, α2 and α3.

These nodes are non-compact and hence are, as we have seen in (4.4), invariant under σ.

Thus, the gl(4,R) part at L = 0 is the same as for A+++
2 . The extra Cartan generators

associated to α4 and α5 are however affected by the conjugation σ. Using (4.6) and (D.8),

– 20 –



J
H
E
P
0
8
(
2
0
0
9
)
0
9
8

the invariant combinations are

h4 = H4 +H5 = −K + 2K4
4, (4.16)

h5 = i(H4 −H5) = i6T , (4.17)

where K =
∑4

a=1K
a
a. We have already seen that the first one is non-compact, while the

second one is compact, i.e.

θ(h4) = −h4 , θ(h5) = h5. (4.18)

The effect of the algebraic Iwasawa decomposition (4.9) will therefore be to project out the

compact Cartan h5. This was anticipated since the generator T is associated with a dilaton

which does not exist in four-dimensional Maxwell-Einstein gravity. We further define the

invariant generators at level L = 1

ra := Ra + R̃a,

r̃a := i(Ra − R̃a).
(4.19)

The corresponding negative step operators at level L = −1 are defined by

ra := Ra + R̃a,

r̃a := i(Ra − R̃a).
(4.20)

More generally, the negative step operators are obtained from the positive ones by lowering

the indices as in (4.20). The bilinear forms at this level reads

(ra|rb) = 2 δab , (r̃a|r̃b) = −2 δab . (4.21)

Using (4.6) and (D.8), we get that the invariant combinations of the Chevalley generators

at level L = 1 are

e4 = r4, e5 = r̃4. (4.22)

That all other components of ra and r̃a are also invariant follows from the fact that they

may be written as commutators between gl(4,R) and r4 and r̃4 which are all invariant.

The two Chevalley generators e4 and e5 have identical eigenvalues with respect to the four

noncompact Cartan

[h1, e4] = 0, [h2, e4] = 0, [h3, e4] = −e4, [h4, e4] = e4,

[h1, e5] = 0, [h2, e5] = 0, [h3, e5] = −e5, [h4, e5] = e5,
(4.23)

implying that these generators project into the same root ~λ in the restricted root system

(see appendix B.3 for more details),

~λ = ~αe4 = ~αe5 = (0, 0,−1, 1). (4.24)

The generator h5, being compact, is not diagonalizable over R. Indeed, we have the

following commutation relations with e4 and e5

[h5, e4] = 3 e5 , [h5, e5] = −3 e4. (4.25)
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L = ℓ1 + ℓ2 Generator of su(2, 1)+++

0 Ka
b

0 i T

1 r a = Ra + R̃a

1 r̃ a = i(Ra − R̃a)

2 s s1s2 = −2 i S s1s2

2 r a1a2 = 2R a1a2

3 r a0|a1a2

3 r̃ a0|a1a2

4 r a0|a1a2a3

4 r a1a2|a3a4

4 r s1s2|a3a4
...

...

Table 2. Level decomposition of su(2, 1)+++ under sl(4,R) up to level 4. The indices ai are

antisymmetric while the indices si are symmetric. Note that the generators from the level L = 3

with mixed Young symmetries are subject to constraints.

The generators at level L = 2 are obtained as

sab := [ra, r̃b] ,

rab := [ra, rb] = [r̃a, r̃b].
(4.26)

These generators are separately invariant under σ. In terms of A+++
2 generators, us-

ing (4.26), (4.19), and (4.14) we get

sab = −2i Sab, (4.27)

rab = 2Rab . (4.28)

These generators are normalized as

(sab|scd) = −4 δ̄abcd , (rab|rcd) = 12 δabcd , (4.29)

where δabcd := 1
2 (δac δ

b
d − δbc δ

a
d) and δ̄abcd := 1

2(δac δ
b
d + δbc δ

a
d).

The level decomposition of su(2, 1)+++ under the A3
∼= sl(4,R) subalgebra up to level

L = 4 is shown in table 2. Note that this level decomposition presents the same Young

tableaux as in the A+++
2 case. We will see in section 5.1 that this representation content

up to level L = 2 where the generator ra1a2 is projected out, can be associated with the

bosonic field content of pure N = 2 supergravity in D = 4 . The relevant commutators

and bilinear forms of su(2, 1)+++ up to level L = 2 are given in appendix D.2.

4.4 Cartan and temporal involutions

For the σ-models to be constructed in the next section we also need to fix a (local) subgroup

of SU(2, 1)+++. We require two different choices, denoted K+++ and K∗+++, leading to
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different coset spaces and that are defined by appropriate involutions at the level of the

su(2, 1)+++ Lie algebra. The level decomposition discussed above does not depend on the

choice of this subalgebra but the σ-model to be studied below does.

The first choice of subalgebra, k+++, is defined by the Cartan involution θ. Its action

on su(2, 1)+++ may be read off from the Tits-Satake diagram of su(2, 1)+++ (see (4.7)). It

has the following action on the generators of su(2, 1)+++,

θ(ra) = −ra, θ(ra) = −ra,
θ(r̃a) = r̃a, θ(r̃a) = r̃a,

θ(sab) = sab, θ(sab) = sab,

θ(rab) = −rab, θ(rab) = −rab,

(4.30)

while on level L = 0 it has the familiar action

θ(Ka
b) = −Kb

a θ(iT ) = iT . (4.31)

The Cartan decomposition therefore reads

su(2, 1)+++ = k+++ ⊕ p+++, (4.32)

where the subalgebra k+++ is defined as the fixed point set under the Cartan involution,

while p+++ contains the generators which anti-invariant under θ. The generators of k+++

reads

k+++ = {x ∈ su(2, 1)+++ : θ(x) = x}
= {iT, jab, (ra − ra), (r̃a + r̃a), (sab + sab), (rab − rab), . . .} ,

(4.33)

where jab = Ka
b −Kb

a, and those of p+++ are

p+++ = {x ∈ su(2, 1)+++ : θ(x) = −x}
= {kab, (ra + ra), (r̃a − r̃a), (sab − sab), (rab + rab), . . .} ,

(4.34)

where kab = Ka
b +Kb

a.

The second choice of subalgebra, k∗+++, is introduced via the so-called temporal in-

volution [11]. The possible existence of a Kac-Moody symmetry G+++ motivated the con-

struction of a Lagrangian formulation explicitly invariant under G+++ . This Lagrangian

SSU(2,1)+++ is defined in a reparametrisation invariant way on a world-line parameter ξ,

apriori unrelated to space-time, in terms of fields living in a coset SU(2, 1)+++/K∗+++.

As the metric gµν at a fixed space-time parametrises the coset GL(D)/SO(1,D − 1), the

subgroup K∗+++ must contain the Lorentz group. As SO(1,D − 1) is non-compact, we

cannot use the Cartan involution θ to construct K∗+++ that is now non-compact. Rather

we will use the temporal involution Ωi from which the required non-compact generators of

K∗+++ can be selected. The temporal involution Ωi generalises the Cartan involution θ

described in (4.30) and (4.31) to allow the identification of the index i as a time coordinate.
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It is defined by

Ωi(iT ) = iT,

Ωi(K
a
b) = −ǫaǫbKb

a,

Ωi(r
a) = −ǫa ra,

Ωi(r̃
a) = ǫa r̃a,

Ωi(s
ab) = ǫaǫb sab,

Ωi(r
ab) = −ǫaǫb rab,

(4.35)

with ǫa = −1 if a = i and ǫa = 1 otherwise.

5 On su(2, 1)++ ⊂ su(2, 1)+++ and σ-models

We now turn our attention to one-dimensional σ-models based on the group SU(2, 1)++.

The g++ content of the g+++-invariant actions SG+++ has been analysed in reference [12]

where it was shown that two distinct actions invariant under the overextended Kac-Moody

algebra g++ exist. We will apply this analysis to g = su(2, 1) and study the two actions

invariant under SU(2, 1)++.

The first one SSU(2,1)++
C

is called the cosmological σ-model and constructed from

SSU(2,1)+++ by performing a truncation putting consistently to zero some fields. The corre-

sponding su(2, 1)++ algebra is obtained from su(2, 1)+++ by deleting the node α1 from the

Tits-Satake diagram of su(2, 1)+++ depicted in figure 2b. The involution used to construct

the action SSU(2,1)+++ is the temporal involution Ω1 (defined in (4.35)) such that coordi-

nate 1 is time-like. This implies that the truncated theory SSU(2,1)++
C

carries a Euclidean

signature in space-time. The SSU(2,1)++
C

is the generalisation of the E++
8 = E10 invariant

action of reference [7] proposed in the context of M-theory and cosmological billiards. The

parameter ξ along the world-line will then be identified with the time coordinate and we

will see in section 5.1 that this action restricted to a defined number of levels is equal to

the corresponding N = 2 supergravity in D = 4 in which the fields depend only on this

time coordinate.

A second SU(2, 1)++-invariant action SSU(2,1)++
B

, called the brane model, is obtained

from SSU(2,1)+++ by performing the same consistent truncation after conjugation by the

Weyl reflection sα1 in su(2, 1)+++. Here, sα1 is the Weyl reflection in the hyperplane

perpendicular to the simple root α1 corresponding to the node 1 of figure 2. The non-

commutativity of the temporal involution Ω1 with the Weyl reflection [63–65] implies that

this second action is inequivalent to the first one (see section 5.3.2 where it is recalled the

consequence of sα1 on the time identification). In SSU(2,1)++
B

, ξ is identified with a space-

like direction. For a generic G, the G++-brane model describes intersecting extremal brane

configurations smeared in all directions but one [11, 66].

5.1 Infinite-dimensional cosmological σ-model

In this section we will analyze how well the suggestions in [7] apply to the pure N = 2

theory. More concretely, we will investigate what features of this theory can be described
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using a non-linear σ-models over an infinite-dimensional coset space, as a generalization

of what we have seen in the case of the scalar Lagrangian (2.32). In fact, we will find a

correspondence between the supergravity fields and the parameters in a one-dimensional

σ-model. For example, as we will see, the dynamics of some solutions to the supergravity

equations of motion can be modelled by motion on a coset space SU(2, 1)++/K++, where

K++ is the compact subgroup with Lie algebra k++ ⊂ su(2, 1)++. The results of this

section will hence be a map between parts of the cosmological σ-model and parts of the

supergravity. This confirms that the general conjecture describing supergravities with

overextended Kac-Moody groups holds, to the same extent, also in the present case of

pure N = 2 supergravity where the symmetry group is in a non-split form. In analogy

with the discussion in section 2.3 and 2.4, the dynamics will be modelled by a non-linear

σ-model of maps from M1
∼= R to SU(2, 1)++/K++. We will now formally construct this

σ-model, and perform a check (as for example done in [67] in the case eleven-dimensional

supergravity), to see if the corresponding equations of motion match with the dynamics

given by the supergravity equations of motion (2.2) and (2.3), when restricting to spatially

constant solutions (in a sense to made more clear below). The action for the σ-model

(given generally by (A.3)) is

SSU(2,1)++
C

=

∫

M1

1

n(t)
(P(t)|P(t)) dt , (5.1)

where n(t) =
√
h is the lapse function and necessary for reparametrization invariance on the

world-line. The function h(t) is the metric on the one-dimensional manifold M1 and (·|·) is

an invariant bilinear form of su(2, 1)++, formed for example by restriction from su(2, 1)+++.

As described previously, P(t) is the component along the coset of the Maurer-Cartan form

defined by maps into the coset. In the case of a one-dimensional base-manifold the σ-model

equations of motion are (see e.g. (A.5))

n ∂t(n
−1 P) + [Q,P] = 0, (5.2)

where P and Q are defined in (A.2). Now, as we are dealing with an infinite-dimensional

coset space we cannot directly realize this model. What we will do is to use the level decom-

position as described previously in section 4, and perform a truncation of the Kac-Moody

algebra by throwing away all the generators above a certain level. This truncation can be

shown to be a consistent truncation of the σ-model equations of motion [67]. Before per-

forming this truncation however, we have to describe the level decomposition of su(2, 1)++

in terms of the decomposition of su(2, 1)+++, given in section 4. By defining su(2, 1)++

as a regular subalgebra of su(2, 1)+++, the level decomposition given in table 2 descends

to su(2, 1)++ by restricting the indices to not run over 1, or equivalently by generating

the representations at every level by acting on the highest weight with the regular sl(3,R)

subalgebra of sl(4,R). In this section, the sl(4,R) indices a, b... will therefore only take the

values 2, 3 and 4.

We can hence realize a suitable truncation of su(2, 1)++ by setting all gL = 0 for

|L| > 2, and furthermore set the antisymmetric generator rab at level L = 2 to zero, as this
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generator has no clear interpretation in terms of supergravity quantities. We can therefore

write general P and Q as

P =
1

2
pabk

ab +
1

2
Pa(r

a + ra) +
1

2
P̃a(r̃

a − r̃a) +
1

2
Pab(s

ab − sab) , (5.3)

and

Q =
1

2
qabj

ab +
1

2
Pa(r

a − ra) +
1

2
P̃a(r̃

a + r̃a) +
1

2
Pab(s

ab + sab), (5.4)

where we have expanded in the basis given in (4.33) and (4.34), in parameters pab, Pa and

so on, depending only on the time coordinate t. We have chosen to put different parameters

in front of the generators at level zero in the expressions for P and Q , considering that kab

and jab are symmetric and anti-symmetric respectively. Using the commutation relations

in appendix D, the equations of motion are now (given by inserting the expressions for P
and Q in (A.11) and (A.12))

n ∂t(n
−1pab) − qcap

c
b − qcbp

c
a + PaPb −

1

2
δabPcP

c + P̃aP̃b

−1

2
δabP̃cP̃

c − 2δabPcdP
cd + 4PacPb

c = 0 , (5.5)

for the field pab,

n ∂t(n
−1Pa) − pacP

c + qacP
c + 2PacP̃

c = 0 , (5.6)

for the field Pa,

n ∂t(n
−1P̃a) − pacP̃

c + qacP̃
c − 2PacP

c = 0 , (5.7)

for P̃a and finally

n ∂t(n
−1Pab) − 2pacPb

c + 2qacPb
c = 0 , (5.8)

for Pab. Regarding notation, we will in the following assume that indices are symmetrized

or anti-symmetrized according to the tensor appearing linearly in expressions as these ones.

For example, in (5.8) the term 2pacPb
c is then short for 1

2(2pacPb
c+2pbcPa

c), the parameter

Pab being a symmetric sl(3,R) tensor.

5.1.1 Dictionary

Let us now begin to compare the above σ-model dynamics with the dynamics given by

our supergravity theory (2.1). We will do this by choosing the parameters in P such

that the σ-model equations of motion (5.5)–(5.8) match with the equations of motion on

the supergravity side. Due to the construction of the σ-model, the natural framework for

doing this is in the ADM-formalism where we will split the Einstein-Maxwell equations into

dynamical equations and constraints/initial conditions. Concretely, we will only consider

the dynamical supergravity equations. For the comparison it will be convenient to treat the

spin connection ωABC and the field strength FAB as the fundamental fields of the Einstein-

Maxwell theory and also considered as constant by letting them be space-independent.

This is suitable because no spatial derivatives exist on the σ-model side. Locally we will

also split the flat space coordinates xa=2,3,4 from the flat time coordinate x1. The spin

connection and the field strength transform under the Lorentz group SO(3, 1) and we can
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use use this freedom, and a coordinate transformation, to put ωABC in a pseudo-Gaussian

gauge by setting the metric shift functions to zero. This leads to ωab1 being symmetric,

and we also assume ω11c = 0, corresponding to space-independent gravity lapse N . This

gauge corresponds to a vielbein of the form

eα
A =

(

N 0

0 eµ
a

)

. (5.9)

In fact, the spin connection can be defined in terms of a tensor ΩABC , called the anholon-

omy, by the relation

ωABC =
1

2
(ΩABC − ΩBCA + ΩCAB), (5.10)

and such that the anholonomy is given in terms of the vielbein by

ΩAB
C = 2 eA

αeB
β∂[αeβ]

C . (5.11)

This pseudo-Gaussian gauge breaks the Lorentz group down to SO(3), acting on the spatial

vielbein eµ
a. Note also that we can rewrite the covariant derivative with respect to the

spin connection using the vielbein, i.e.

e−1∂t(eωab1) = e−1 ∂teωab1 + ∂tωab1

= em
c ∂te

m
c ωab1 + ∂tωab1 (5.12)

= Nωcc1ωab1 +N∂1ωab1.

Here we have used that ∂1 = N−1∂t. We will now consider the different parts of the

supergravity equations of motion (2.2), (2.3) and the Bianchi identity (2.4), one at the

time.

In addition to the gauges in the gravity sector, we also have to adopt a temporal gauge

for the Maxwell field, corresponding with our choice of time coordinate to

A1 = 0 . (5.13)

• Ricci-tensor

First, let us consider the Ricci-tensor. Our Riemann-tensor written with flat indices

is given in terms of the spin connection and the anholonomy by

RABCD = ∂AωBCD − ∂BωACD + ΩAB
EωECD

+ ωAC
EωBED − ωBC

EωAED .
(5.14)

From this expression we can derive the purely spatial Ricci-tensor appearing in (2.2)

with our gauge choice,

Rab = ∂1ωab1 + ωab1ω
c
c1 + ωab

dωcdc − ω1caω
c
b1 + ωca1ω1b

c + ωcdaω
d
bc. (5.15)

Now, to match with the σ-model equation (5.5), we make the ansatz ωab1 = c1 pab
and ω1ab = c2 qab. Using this ansatz, one rewrites (5.15) as

Rab =(Ne)−1∂t(e c1 pab) − c1 c2 qca p
c
b − c1 c2 qcb p

c
a

+ ωab
dωcdc + ωcdaω

d
bc .

(5.16)
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Comparing with (5.5) we conclude that c1 = c2 = N−1, and n = e−1N (multiply (2.2)

with N2 to make the identification easier). Consider now the last term in (5.16).

Somehow we need to match ωabc with the parameter Pab. We do this by the ansatz

Ωabc = c3ǫabdP
d
c. (5.17)

There is here a mismatch in the number of degrees of freedom between these two

tensors. From the symmetry of Pab we see that the anholonomy must obey a trace

condition,

Ωab
b = c3ǫabcP

cb = 0. (5.18)

This removes three of the nine degrees of freedom in the purely spatial anholonomy

and with this condition its degrees of freedom equals the number of components of

Pab. It is generally assumed that this trace condition always can be imposed [7].

Observe that the tracelessness Ωabb = 0 is equivalent to ωbba = 0. Hence the second

to last term in (5.16) vanishes. From the expression (5.10) of the spin connection in

terms of the anholonomy, the last term in (5.16) can be rewritten as

ωcdaω
d
bc =

1

4
ΩcdaΩ

cd
b −

1

2
Ωda

cΩd
bc −

1

2
ΩadcΩb

cd. (5.19)

Let us take a closer look at the last term ΩadcΩb
cd. The first two indices a and d

in the first anholonomy has no matching index with the first two indices b and c

of the second anholonomy. With our ansatz (5.17) this kind of index structure is

impossible to match with anything in the σ-model at low levels, as there is no such

term in (5.5). This is a general phenomena when matching infinite-dimensional coset

space σ-models with supergravity theories. In particular it is true also for the well

studied case of eleven-dimensional supergravity. For example in [67] it is suggested

that this term comes from terms in the σ-model that we in the current truncation have

thrown away but the confirmation of this claim is still an open problem. Inserting

our ansatz (5.17) in (5.19) we get (leaving the last term as it is)

ωcdaω
d
bc = −c

2

2
δabPcdP

cd + c2PacPb
c − 1

2
ΩadcΩb

cd. (5.20)

Looking at (5.5) we get precise matching if c3
2 = 4N−2 and if we ignore the anomalous

monomial in the anholonomy. The sign of c3 remains unfixed, so we define c3 =

2N−1c′3, where |c′3| = 1. Let us now turn to the rest of the terms in the equation of

motion (2.2) for the metric.

• Maxwell field

From the Einstein-Maxwell equation (2.2) we get when looking at the spatial part of

the two monomials in the field strength (remembering that we multiplied with N2),

N2

2
δabFCDF

CD − 2N2FaCFb
C =

N2

2
δab (−2F1cF1

c + FcdF
cd)

+ 2N2(Fa1Fb1 − FacFb
c).

(5.21)
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A reasonable here ansatz is

F1c = c4Pc ,

Fab = c5ǫabcP̃
c ,

(5.22)

giving

N2

2
δabFCDF

CD − 2N2FaCFb
C =N2c4

2(−δabPcP c + 2PaPb)

+N2c5
2(−δabP̃cP̃ c + 2P̃aP̃b).

(5.23)

Comparing with (5.5) we see that we must put c4
2 = c5

2 = 1
2N2 . As in the case for

c3, the signs of c4 and c5 is still unfixed, so we define c4 = 1√
2N
c′4 and c5 = 1√

2N
c′5

where again |c′4| = |c′5| = 1. Note that whether F1c should be proportional to Pa
or P̃a is up till now not fixed as they have appeared symmetrically so far. In fact,

when we now turn to consider the equation of motion for FAB (2.3) and its Bianchi

identity (2.4) it turns out that neither of these equations will fix this arbitrariness or

the signs of the functions ci. This is due to the symmetry between the roots α4 and

α5 and can be interpreted physically as electromagnetic duality.

• Equations of motion and Bianchi identities for FAB

Finally we consider the equation of motion for the field strength FAB (2.3). Explicitly

the covariant derivative becomes

DAFAB = ∂AFAB − ωC
ACFAB − ωACBF

AC = 0. (5.24)

Looking at the spatial dynamics, putting B = b and splitting the sums over space

and time we get

DAFAb = −∂1F1b − ωee1F1b + ω1cbF1
c − ωab1F

a
1 − ωacbF

ac = 0. (5.25)

Again we recognize the “time” covariant derivative from (5.12). Hence we have

e−1N−1∂t(eF1b) = ωee1F1b + ∂1F1b. (5.26)

Note also that ωacbF
ac = 1

2ΩacbF
ac. With the expressions for the anholonomy (5.17),

we derived above, we rewrite the equation for the field strength as

e−1N−1∂t(eN
−1c4

′Pb) + c4
′N−2(qbcP

c − pcbP
c) + 2c3

′c5
′N−2PcbP̃

c = 0. (5.27)

This agrees with the σ-model equation (5.6) if c3
′c5′ = c4

′. Consider now the Bianchi-

identity (2.4). Letting A = a we get

ǫaBCDDBFCD = ǫa1bcD1Fbc + 2ǫabc1DbFc1 ,

= ǫabc∂1Fbc − 2ǫabcω1dbF
d
c + 2ǫabcωbd1F

d
c − 2ǫabcωbdcF

d
0

= 0.

(5.28)
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Level L Supergravity field SU(2, 1)++ field su(2, 1)++ generator

0 ωabt pab kab

0 ωtab qab jab

1 Ftc
1√
2
c4

′Pc ra

1 NFab
1√
2
c5

′ǫabcP̃ c r̃a

2 NΩabc 2c4
′c5′ǫabdP dc sab

− Ne−1 n -

Table 3. Correspondence between the bosonic fields in the supergravity theory and the Kac-Moody

σ-model. The parameters c4
′ and c5

′ are unfixed and are ±1. All the supergravity quantities are

assumed to be evaluated at a fixed spatial point.

As ǫabcωbdc = 1
2ǫ
abcΩcbd,

∂1(c5
′N−1P̃a) + c5

′N−2(qabP̃b − pabP̃b +Nwbb1P̃a) − 2c3
′c4

′N−2PacPc = 0.

Again using (5.12) and multiplying everything with N2 we find

n ∂t(n
−1P̃a) − pabP̃

b + qabP̃
b − 2

c3
′c4′

c5′
PacP

c = 0. (5.29)

This is precisely the corresponding equation (5.7).

• Riemann Bianchi

What remains to analyze is the last equation of the σ-model (5.8), which is to be

matched with the algebraic Bianchi identity (2.5) for the Riemann tensor on the

supergravity side. The component of (2.5) to be considered is the symmetric purely

spatial part. These turn out to be exactly equivalent in the current truncation,

automatically by the above mapping of fields. This is a consistency check of our

analysis.

• Summary

Hence, our analysis has given us an almost complete correspondence between the

parameters of the truncated SU(2, 1)++
C -model and the dynamics of certain spatially

constant solutions of pure N = 2 supergravity. This result summarized in the table 3

is what was expected from the structure of the low-lying sl(3,R) representations.

The map is similar to those already constructed for other supergravity theories, and

succeeds and fails at the same points. We point out that in addition to the dynamical

equations, there are in general constraint equations to be verified, for example the

(spatial) diffeomorphism constraint and Gauss constraints. We expect that they are

satisfied in the same way as for the maximally supersymmetric case [17].

5.2 The su(2, 1)+++ algebraic structure of BPS branes

In this subsection, we show that the BPS solutions (2.26) which are upon dimensional re-

duction on time described in the su(2, 1) σ-model by equation (2.33), are in fact completely
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algebraically described in su(2, 1)+++. In order to do so we now choose the time coordinate

to be the direction x4. More precisely, we show that the full space-time solution (2.26)

can be reconstructed (i.e. not only the part which correspond to scalars upon dimensional

reduction) by demanding that the su(2, 1) is regularly embedded11 in su(2, 1)+++. The

regular embedding is defined by erasing the nodes α1, α2 and α3 in figure 2b.

We first recall that we can describe the non-compact Cartan fields of su(2, 1)+++ in

two bases, the gl(4,R) one described by the generators Ka
a, (see (4.11)) and the Chevalley

base given by the hm, m = 1 . . . 4 (see (4.6)). The fields corresponding to the former are

denoted pa and the ones corresponding to the latter denoted qa (a = 1 . . . 4). The relation

between these two bases is:
4∑

a=1

paK
a
a =

4∑

a=1

qa ha, (5.30)

where the pa’s encode the diagonal metric in su(2, 1)+++. We have indeed pa = 1
2 ln gaa

where gaa is the four-dimensional metric. This follows for instance from [13] or also from

the results of the preceding section, summarized in table 3.

We are now in position to impose the regular embedding which amounts at the level

of the Cartan to enforce

q1 = q2 = q3 = 0. (5.31)

Using (5.30) the conditions (5.31) translate for the pa’s into

p1 = p2 = p3 = −p4. (5.32)

Consequently the regular embedding of su(2, 1) in su(2, 1)+++ imply on the physical four-

dimensional metric the following conditions:

g1 1 = g2 2 = g3 3 = g−1
4 4 , (5.33)

which is satisfied by the BPS metrics (2.26). This completes the proof that the

four-dimensional BPS solutions are described by the regular embedding of su(2, 1) in

su(2, 1)+++. It is worth noticing that this description is not valid for non-BPS solu-

tions and it indicates again the special role played by BPS solutions in the g+++ approach

(see [11], [16]).

5.3 Weyl reflection in su(2, 1)+++

In this subsection, we first discuss a definition of the Weyl group of su(2, 1) and its action

on BPS solutions of the N = 2 supergravity. Then, we will study the Weyl group of

su(2, 1)+++ and its possible consequence on the space-time signature.

11We recall that a subalgebra ḡ ⊂ g is regularly embedded in g if the root vectors of ḡ are root vectors

of g, and the simple roots of ḡ are real roots of g. Of particular relevance for our analysis is that, as a

consequence, the Weyl group W(ḡ) of ḡ is a subgroup of W(g). For finite-dimensional Lie algebras the

concept of a regular embedding was introduced by Dynkin in [68], and was subsequently extended to the

infinite-dimensional case by Feingold and Nicolai [69].
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5.3.1 Weyl reflection in su(2, 1)

First, we briefly recall how to construct the Weyl group of the complex algebras A2. The

Weyl group W of A2 is generated by the two simple Weyl reflections sα4 , sα5 associated

respectively to the simple roots α4 and α5 (see figure 2a). The group contains six elements

WA2 = {1, sα4 , sα5 , sα4sα5 , sα5sα4 , sα4sα5sα4} , (5.34)

and is isomorphic to the symmetric group S3 on three letters. We first note that among

the six elements, three correspond to reflections: sα4 , sα5 and sα4sα5sα4 . The third trans-

formation correspond to the Weyl reflection associated to the non-simple roots α4 + α5

namely sα4sα5sα4 = sα4+α5 . The action of sα4+α5 on the simple roots of A2 is:

sα4+α5(α4) = −α5 ,

sα4+α5(α5) = −α4 .
(5.35)

The strategy used here to define the Weyl group of su(2, 1) is to retain only the reflec-

tions of the Weyl group of A2 associated to the roots which are invariant under the con-

jugation σ fixing the real form su(2, 1). Using (4.3) we deduce that the only invariant

Weyl reflection is sα4+α5 . Consequently, we define the Weyl group of su(2, 1) as being

W
su(2,1) = {1, sα4+α5}. This is in agreement with the restricted root system describing

su(2, 1) given in appendix B.3. The restricted root system of su(2, 1) is (BC)1 [41] and the

Weyl group of (BC)1 is generated by one restricted root λ2 (see (B.22)) which precisely

correspond to the root α4 + α5 in A2.
12

We now determine the element W of SU(2,1) corresponding to the Weyl transformation

sα4+α5 and acting by conjugation on the coset element V namely: V ′ = W V W−1. The

conjugate action on V implies a conjugate action on P = 1
2

(
dVV−1 − Ω4(dVV−1)

)
, if

W pertains to the invariant subgroup under the temporal involution Ω4 namely K∗ =

SL(2,R) × U(1) (see (4.35) and appendix B.4). We will check below that it is indeed the

case. In order to find W we use (5.35) which translate at the level of the A2 algebra into

W E4 W−1 = ǫ F5,

W E5 W−1 = ǫ F4,
(5.36)

while on the generators of su(2, 1) we get (see (4.6))

W e4 W−1 = ǫ f4 ,

W e5 W−1 = −ǫ f5 ,
(5.37)

where ǫ is a plus or minus sign.13

Demanding the equations (5.36) to be satisfied and imposing W2 = 1 determine W
univocally, we get:

W = exp

[

− π

2
h5

]

exp

[
π

2
(e4,5 + f4,5)

]

, (5.38)

12The fact that the restricted root system of su(2, 1) is of non-reduced type has interesting consequences

for the behaviour of D = 4 Einstein-Maxwell gravity in the vicinity of a space-like singularity (“BKL-limit”).

For information on these aspects of Maxwell-Einstein gravity, we refer to [23, 25].
13This arises since step operators are representations of the Weyl group up to signs.
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which fixes ǫ = −1. The generators h5 and (e4,5+f4,5) pertaining both to k∗ = sl(2,R)⊕u(1)

and k = su(2)⊕ u(1) (see appendices B.2 and B.4), the element W belongs to both K∗ and

K, ensuring the validity of the procedure to derive it.

We are know in the position to derive the effect of the Weyl transformation on the

BPS solutions given by (2.26). Since the element W ∈ K∗, to see how the four charges

transforms we can just conjugate by W the charge matrix (2.34). We find that under W
the charges transform as:

(m,n, q, h)
W−→ (−m,−n, q, h). (5.39)

This Weyl transformation maps physical solutions with positive charges to unphysical so-

lutions with negative charges.

5.3.2 Effect of Weyl reflections on space-time signature

In this section we will focus on the Weyl group of su(2, 1)+++ and we will study the effect

of Weyl reflections on the space-time signature (1, 3) of the N = 2 supergravity theory in

D = 4. First, recall that a Weyl transformation of a generator T of a Lorentzian algebra

g+++ can be expressed as a conjugation by a group element UW of G+++: T −→ UW T U−1
W .

Because of the non-commutativity of Weyl reflections with the temporal involution Ωi

(defined in (4.35))

UW (ΩiT )U−1
W = Ω′ (UWTU

−1
W ) , (5.40)

different Lorentz signatures (t, s) (where t(s) is the number of time (space) coordinates) can

be obtained [12, 63]. The analysis of signature changing has been done for all g+++ that

are very-extensions of a simple split Lie algebra g [64, 70]. In these cases, Weyl reflections

with respect to a root of gravity line14 do not change the global Lorentz signature (t, s)

but it changes only the identification of the time coordinate. In fact, only Weyl reflections

with respect to roots not belonging to the gravity line can change the global signature of

the theory. We will now study the possible signature changing induced by Weyl reflections

of the non-split real form su(2, 1)+++.

The Weyl group of su(2, 1)+++ namely W
su(2,1)+++ is generated by the Weyl reflection

sα4+α5 belonging to W
su(2,1) and by the simple Weyl reflections with respect to the roots

of gravity line sα1, sα2, sα3 . Because of the presence of the affine Weyl reflection sα3, the

Weyl group W
su(2,1)+++ becomes infinite-dimensional

W
su(2,1)+++ = {1, sα1 , sα2 , sα3 , sα4+α5 , . . .} . (5.41)

The effect of the Weyl reflection sα1
. As is the case for split forms, Weyl reflections

with respect to the gravity line of su(2, 1)+++ will not change the global signature (1, 3)

but it will only change the identification of time index. The roots of the gravity line are

indeed not affected by arrows and they are all non-compact roots as for split real form.

Let us recall a simple example of the consequence of the Weyl reflection sα1 on the space-

time signature [12]. We start with the temporal involution Ω1 allowing the index 1 to be

14The gravity line is the set of the simple roots of the sl(n, R)-part of g+++. It corresponds in the case

of su(2, 1)+++ to the roots α1, α2 and α3.
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K1
2 K2

3 K3
4 time coordinate

Ω1 + − − 1

Ω2 + + − 2

Table 4. Involution switches from Ω1 to Ω2 in su(2, 1)+++ due to the Weyl reflection sα1
.

the time index. Applying (5.40) to the Weyl reflexion sα1 generates from Ωi ≡ Ω1 a new

involution Ω′ ≡ Ω2 such that

U1 Ω1K
2
1 U

−1
1 = ρK2

1 = ρΩ2K
1
2,

U1 Ω1K
1
3 U

−1
1 = σK3

2 = σΩ2K
2
3 ,

U1 Ω1K
i
i+1 U

−1
1 = −τ Ki+1

i = τ Ω2K
i
i+1 i > 2 ,

(5.42)

where ρ, σ, τ are plus or minus signs (see footnote 13). The equations (5.42) illustrate

the general result that such signs always cancel in the determination of Ω′ because they

are identical in the Weyl transform of corresponding positive and negative roots, as their

commutator is in the Cartan subalgebra which forms a true representation of the Weyl

group. The content of (5.42) is represented in table 4. The signs below the generators of

the gravity line indicate the sign in front of the negative step operator obtained by the

involutions Ω1 and Ω2 (see (4.35)): a minus sign indicates that the indices in Km
m+1 are

both either space or time indices while a plus sign indicates that one index must be time

and the other space.

The table 4 shows that the time coordinates in su(2, 1)+++ must now be identified ei-

ther with 2, or with all indices 6= 2. We choose the first description, which leaves unaffected

coordinates attached to planes invariant under the Weyl transformation. More generally,

by Weyl reflections with respect to a root of the gravity line, it is possible to identify the

time index to any sl(4,R) tensor index.

The effect of the Weyl reflection sα4+α5
. We will now study the effect of the partic-

ular Weyl reflection sα4+α5 on the space-time signature (1, 3). We will first act with sα4+α5

on the generators of A+++
2 to find then the transformation of the generators of su(2, 1)+++.

Only the simple roots α3, α4 and α5 are modified by this reflection. Its action on the roots

α4 and α5 is done in (5.35) while on the root α3, it acts as

sα4+α5(α3) = α3 + 2(α4 + α5) . (5.43)

Note that the root α3 is transformed in a root of level ℓ = (2, 2), the root α4 to a negative

root of level ℓ = (0,−1) and the root α5 to a negative root of level ℓ = (−1, 0) (see table 1).

The generators associated to roots α3, α4 and α5 are modified respectively as

WK3
4W−1 = γ

[

2S34

︷ ︸︸ ︷

[K3
4, S

44], S44
]

= γ 2R44|34 ,

W R4W−1 = ǫ R̃4 ,

W R̃4W−1 = ǫR4 .

(5.44)
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Using the table 2, we find how the generators of su(2, 1)+++ transform under this Weyl

reflection

WK3
4W−1 = γ [

is34
︷ ︸︸ ︷

[K3
4,
i

2
s44],

i

2
s44]

= −1

2
γ r44|34 ,

W r4W−1 = ǫ r4 ,

W r̃4W−1 = −ǫ r̃4 .

(5.45)

If we apply (5.40) and (4.35), we find the action of Ω′ on these generators:

γ Ω′K3
4 = −1

2
Ω′ (Wr44|34W−1) = −1

2
W Ωi r

44|34
︸ ︷︷ ︸

−ǫ3ǫ4r44|34

W−1

= γ(−)ǫ3ǫ4K
4
3 ,

ǫΩ′r4 = Ω′(Wr4W−1) = W Ωir4
︸︷︷︸

−ǫ4r4
W−1 ,

= ǫ(−ǫ4)r4 ,
−ǫΩ′r̃4 = Ω′(W r̃4W−1) = W Ωi r̃4

︸ ︷︷ ︸

ǫ4r̃4

W−1 ,

= −ǫ(ǫ4)r̃4 .

(5.46)

From (5.46), one gets

Ω′K3
4 = −ǫ3 ǫ4K4

3 = ΩiK
4
3 ,

Ω′r4 = −ǫ4 r4 = Ωi r
4 ,

Ω′r̃4 = ǫ4 r̃4 = Ωi r̃
4 .

(5.47)

We find in (5.47) that the involution Ω′ acts exactly in the same way that the involution

Ωi defined by (4.35). We can then conclude that the Weyl reflection sα4+α5 does not affect

the signature (1, 3) of N = 2 supergravity theory in D = 4.

6 Embedding of su(2, 1)+++ in e11

In this final section, we find a regular embedding of su(2, 1)+++ in the split real form of

e11.
15 This embedding will be derived using elegant arguments from brane physics. We

will relate between themselves different extremal brane configurations of eleven-dimensional

supergravity and pure N = 2 supergravity in D = 4. We first describe the brane setting

we use.

15An embedding of su(2, 1) in e8(8) has been discussed in [71].
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Branes 1 2 3 4 5 6 7 8 9 10 11

A1=M5 • • • • • •
A2=M5 • • • • • •
A3=M2 • • •
A4=M2 • • •

Table 5. Configuration A: the extremal brane configuration leading to a four-dimensional extremal

Reissner-Nordström electrically charged black hole. The directions 1 to 4 are non-compact (where

4 is time) and the directions 5 to 11 are compact.

6.1 The brane setting

We build an extremal brane configuration allowed by the intersection rules [44, 72] leading

upon dimensional reduction down to four to an extremal Reissner-Nordström electrically

charged black hole solution [73] of N = 2 supergravity in D = 4.

The configuration, that we denote by configuration A, built out of two extremal M5

branes and two extremal M2 branes is the following (again we choose the direction 4 to be

time-like):

This extremal configuration is generically characterised by four different harmonic

functions in three dimensions, one for each brane. Here we choose the harmonic function

to be the same for all the branes: H = 1 + q
r

where r is the radial coordinate in the

four-dimensional non-compact space-time (we denote also φ ∈ [0, 2π] and θ ∈ [0, π] the

usual angles, considering spherical coordinates). The metric of this intersecting branes

configuration, depending only on the q parameter is:

ds211 = −H−2dx2
4 +H2(dx2

1 + dx2
2 + dx2

3) +
11∑

i=5

dx2
i . (6.1)

Upon dimensional reduction down to four dimensions the metric (6.1) is the four-

dimensional extremal Reissner-Nordström electrically charged black hole solution of N = 2

supergravity in D = 4 given by (2.26) with m = q and n = h = 0 and with t = x4.

The eleven-dimensional solution is characterised by four non-zero components A(i), i =

1 . . . 4, of the three form potential, one for each brane. These are given by (see for in-

stance [44]):

A(1) = Aφ56, A(2) = Aφ78, A(3) = A468, A(4) = A457. (6.2)

The corresponding non-vanishing components of the field strengths are such that ⋆F (1) =

⋆F (2) = F (3) = F (4) = ∂r(H
−1) where ⋆ denotes the Hodge dual in eleven dimensions. As

a consequence, if we want to interpret the configuration after dimensional reduction as an

electric Reissner-Nordström black hole we have to identify the four-dimensional Maxwell

field strength (4)F of (2.1) as being the dimensional reduction of the diagonal eleven-

dimensional field strength (11)F diag ≡ ⋆F (1) + ⋆F (2) + F (3) + F (4). This gives indeed

back (2.26) with m = q and n = h = 0.
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Branes 1 2 3 4 5 6 7 8 9 10 11

B1=M2 • • •
B2=M2 • • •
B3=M5 • • • • • •
B4=M5 • • • • • •

Table 6. Configuration B: the extremal brane configuration leading to a four-dimensional extremal

Reissner-Nordström magnetically charged black hole.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

α11

Figure 3. Dynkin diagram of e11.

Having the eleven-dimensional origin of the electrically charged extremal Reissner-

Nordström black hole, we can now easily deduce the eleven-dimensional configuration cor-

responding to the magnetically charged extremal Reissner-Nordström by Hodge dualising

in four dimensions (i.e. the internal coordinates xi, i = 5 . . . 11, playing now a passive

role) and uplifting back to eleven dimensions. One immediately deduces that the non-zero

components Ã(i) of the dual configuration are:

Ã(1) = A456, Ã(2) = A478, Ã(3) = Aφ68, Ã(4) = Aφ57. (6.3)

From (6.2), we deduce that the dual configuration, denoted with the letter B, is the one

given in table 6.

The knowledge of the two dual configurations in eleven dimensions will permit us to

find an embedding of su(2, 1)+++ in e11. In order to do that we first recall how branes are

encoded in the algebraic structure of e11.

6.2 Description of the brane configuration in e11

We first briefly recall the algebraic structure of e11. The Dynkin diagram is depicted in

figure 3.

The Lorentzian Kac-Moody algebra e11 contains a subalgebra gl(11,R) such that

sl(11,R) ∼= A10 ⊂ gl(11,R) ⊂ e11. We can again perform a level decomposition of e11.

The level l here is defined by the number of times the root α11 appears in the decompo-

sition of the adjoint representation of e11 into irreducible representation of A10. The first

levels up to l = 3 are listed in table 7 [74, 75]. Here, the indices are vector indices of

sl(11,R) and hence take values a = 1, . . . , 11.
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l sl(11,R) Dynkin labels Generator of e11

0 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1] Ka
b

1 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] R abc

2 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] R abcdef

3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 1] R̃ abcdefgh|i

Table 7. Level decomposition of e11 under sl(11,R) up to level l = 3.

Brane of conf. A step operator Brane of conf. B step operator

A1 R4 7 8 9 10 11 B1 R4 5 6

A2 R 4 5 6 9 10 11 B2 R4 7 8

A3 R4 6 8 B3 R4 5 8 9 10 11

A4 R4 5 7 B4 R4 6 8 9 10 11

Table 8. The positive step operator corresponding to each brane of configurations A and B.

The positive Chevalley generators of e11 are ẽm = δamK
a
a+1, m = 1, . . . , 10, and

ẽ11 = R 9 10 11 where Rabc is the level 1 generators in e11. One gets for the Cartan generators

h̃m = δam(Ka
a −Ka+1

a+1) for m = 1, . . . , 10 ,

h̃11 = −1

3
(K1

1 + . . .+K8
8) +

2

3
(K9

9 +K10
10 +K11

11) .
(6.4)

We now recall how the extremal branes of eleven-dimensional supergravity are encoded

in the algebraic structure of e11 (see [11, 12, 66, 76]).

Each extremal brane Bi corresponds to one real root αBi
(or one positive step operator)

of e11 and the description is always electric namely each M2 brane is described by a definite

component of the three form potential at level one and each M5 is described by a component

of the six-form potential of level two. The non-zero component is the one with the indices

corresponding to longitudinal directions of the extremal brane Bi. The only other non-

zero fields are the Cartan ones which encode the form of the metric [11]. The intersection

rules [72] are neatly encoded through a pairwise orthogonality condition between the roots

corresponding to each brane [66].

It is worthwhile to recall that such an algebraic description of extremal brane configu-

rations extends to all space-time theories characterized by a g+++ with simple g. Here, we

will see that it also applies to pure N = 2 supergravity inD = 4 where g+++ = su(2, 1)+++,

this will be crucial in the next subsection to uncover the embedding.

In table 8, we list the positive step operators corresponding to each brane entering in

configuration A and B. Since all the harmonic functions are the same in configuration A

and the dual one B, each one is characterized by an unique element of e11. We have

conf.A ⇔ c (ǫ1R
4 7 8 9 10 11 + ǫ2R

4 5 6 9 10 11 + ǫ3R
4 6 8 + ǫ4R

4 5 7) , (6.5)

conf.B ⇔ c (ǫ1R
4 5 6 + ǫ2R

4 7 8 + ǫ3R
4 5 7 9 10 11 + ǫ4R

4 6 8 9 10 11) , (6.6)

where c is a real constant and ǫi, i = 1 . . . 4 are signs. We will fix them in the next section.
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6.3 The regular embedding

We are now in the position to find a regular embedding of su(2, 1)+++ in e11.
16 We first

discuss the non-compact Cartan generators of su(2, 1)+++: hi with i = 1, . . . , 4.

6.3.1 The non-compact Cartan generators of su(2, 1)+++

We first recall that we can describe the Cartan fields of e11 in two bases, the gl(11,R) one

and the Chevalley base given by the h̃m (see (6.4)). The relation between these two bases

(see (5.30)) is:

11∑

a=1

paK
a
a =

11∑

a=1

qa h̃a . (6.7)

To find the non-compact Cartan generators of su(2, 1)+++ out of the eleven Cartan gener-

ators of e11, we have simply to enforce

pa = 0 , a = 5, . . . , 11. (6.8)

One can easily understand this embedding condition in several different ways. In the brane

context by noticing that the metric (6.1) is characterized by gaa = 1 for all the longitudinal

coordinates (a = 5 . . . 11). In a more general way this amounts to demanding that all the

scalars coming from the dimensional reduction from eleven down to four should be zero. It

is a necessary condition to have a consistent truncation of eleven-dimensional supergravity

to pure N = 2 supergravity in D = 4.

Using (6.7) we can translate the embedding condition (6.8) in terms of the qa’s us-

ing (6.4), we find

qa =
a− 2

3
q11, a = 4, . . . , 8 ,

q9 =
4

3
q11,

q10 =
2

3
q11.

(6.9)

Plugging back (6.9) into the Cartan fields of e11 in the Chevalley basis, we find

11∑

a=1

qa h̃a = q1h1 + q2h2 + q3h3 +
q11
3
h4, (6.10)

where the hi are the four non-compact Cartan generators of su(2, 1)+++ (see (4.6)). This

completes the discussion of the embedding for the non-compact Cartan generators.

16An embedding of the split g+++
2 in e11 was found in [39]. In this reference additional generators were

added to take into account the higher rank forms that can be added consistently to the supersymmetry

algebra in D = 5 and to the tensor hierarchy [38, 77].
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6.3.2 The other generators of su(2, 1)+++

We now find the embedding of the simple step operators and of the compact Cartan

generator h5. The simple step operators corresponding to the first three nodes of figure 2b

are of course trivially identified with the step operators of the first three nodes of figure 3.

We turn to the generators corresponding to the nodes 4 and 5 of figure 2b, respectively r4

and r̃4. An extremal Reissner-Nordström electrically (resp. magnetically) charged black

hole is a zero brane (the only longitudinal direction 4 being time-like). We recall that it is

described in su(2, 1)+++ by the step operator r4 (resp. r̃4) [11]. Consequently, using the

brane picture expressions (6.5) and (6.6), we have the identification

r4 =
1√
2

(ǫ1R
4 7 8 9 10 11 + ǫ2R

4 5 6 9 10 11 + ǫ3R
4 6 8 + ǫ4R

4 5 7) ,

r̃4 =
1√
2

(ǫ1R
4 5 6 + ǫ2R

4 7 8 + ǫ3R
4 5 7 9 10 11 + ǫ4R

4 6 8 9 10 11) ,
(6.11)

where the constant c in (6.5) and (6.6) has been fixed to fulfill the normalization of r4 and r̃4

in su(2, 1)+++ (see (4.21)). We still have to determine the signs ǫi. We will fix them in the

process of determining the compact Cartan h5 of su(2, 1)+++. The commutation relations

(4.25) imply that basically h5 interchanges the electric and magnetic configuration. The

operator h5 embedded in e11 should thus correspond, in the brane picture, to the operator

interchanging configuration A and B (see tables 5 and 6). In order to map configuration A

onto configuration B, brane by brane (i.e Bi → B̃i, i = 1 . . . 4), we have to perform three

operations: a double T-duality in the directions 9 and 10, an exchange of the direction 6

and 7 and an exchange of the direction 5 and 8. A double T-duality in the directions 9 and

10 (followed by the exchange of the directions 9 and 10) is described in e11 by the Weyl

reflection corresponding to the simple root α11 (see figure 3) [13, 78, 79]. The associated

compact generator is: R9 10 11 −R9 10 11. The exchange of coordinates 6 and 7 (resp. 5 and

8) is generated by the compact generator K6
7−K7

6 (resp. K5
8−K8

5). We thus deduce that

h5 = K6
7 −K7

6 +K5
8 −K8

5 +R9 10 11 −R9 10 11, (6.12)

we have (h5|h5) = −6 as it should (see (4.17), (4.12)).

To fix the signs in (6.11) we use the relation
[
r4, r̃4

]
= h5, we find

r4 =
1√
2

(R4 7 8 9 10 11 +R4 5 6 9 10 11 −R4 6 8 + R4 5 7) ,

r̃4 =
1√
2

(R4 5 6 +R4 7 8 −R4 5 7 9 10 11 +R4 6 8 9 10 11) ,

r4 =
1√
2

(R4 7 8 9 10 11 +R4 5 6 9 10 11 −R4 6 8 + R4 5 7) ,

r̃4 =
−1√

2
(R4 5 6 +R4 7 8 −R4 5 7 9 10 11 +R4 6 8 9 10 11).

(6.13)

We can the check that the definitions (6.12)–(6.13) together with the hi, i = 1 . . . 4

(see (6.10)) satisfy all the relations of su(2, 1)+++.
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The expressions (6.12)–(6.13) and (6.9)–(6.10) define thus a regular embedding of the

non-split su(2, 1)+++ in the split form of e11, proving the algebraic counterpart of the

truncation of maximal supergravity to the N = 2 theory.
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A Non-linear σ-models over coset spaces

Here we recall how to define a non-linear σ-model over a coset space G/H. Let G be a

connected Lie group. Consider its real Lie algebra g and an involution ı : g → g. Using

the two eigenspaces of ı we can write the Lie algebra as the direct sum g = h ⊕ p where

here h is the span of the generators fixed under ı and not the Cartan subalgebra. It does

hence constitute a subalgebra. Let H be the closed Lie group corresponding the subalgebra

h. We can now consider H as a topological subspace of G and define the coset space G/H

as the set of left cosets Hg. As H is closed G/H can be endowed with a smooth manifold

structure. It is now natural to consider G/H as the base manifold of a H-principal fiber

bundle H →֒ G
π→ G/H. In fact, in the case when ı = θ defines a Cartan decomposition of

g, this bundle is trivial due to the global Iwasawa decomposition.

Consider a k-dimensional manifold W with metric h. For simplicity we will take W to

have a vanishing affine connection. We can now define a σ-model for smooth maps V : W →
G/H, such that V : p 7→ HV(p). Locally V can be described, using the exponential map, by

a map v : W → p. Let k : W → H be a smooth map, V and kV define hence the same map

into the coset. We will call such maps k gauge transformations for reasons to be clear below.

Our main three criteria on the Lagrangian Lσ of the σ model is that it should be invariant

under G acting globally on V from the right, under gauge transformations and such that

its equations of motions should be second order in derivatives of V. It is hence natural to

define the action in terms of the g-valued Maurer-Cartan form on G restricted to G/H:

dVV−1 = P + Q , (A.1)

where

P = Pı(dVV−1), Q = (1 − Pı)(dVV−1) , (A.2)
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with Pı : g → p is the projection onto the coset algebra. We therefore write our

Lagrangian as

Lσ =
√

|h|hµν(Pµ|Pν), (A.3)

where (·|·) is the Killing form of g and h = det hµν . This Lagrangian is manifestly

invariant under the right action of G on V, and also under gauge transformations acting

from the left on V.

To derive the equations of motion, consider a variation of V from the left, i.e. V(x) →
V ′(x) = eǫ(x)V(x), with ǫ(x) ∈ p infinitesimal. As the action is invariant under the action

of local K-transformations from the left, this is a non-trivial deformation only for p-valued

ǫ(x). This transformation gives

δP = dǫ+ [Q, ǫ] , (A.4)

and the equations of motion thus become

∂µ(
√

|h|hµνPν) −
√

|h|hµν [Qµ,Pν ] = 0. (A.5)

The h-valued field Q transforms under gauge transformations as a connection, i.e. if k is a

gauge transformation the connection Q′ derived from kV is given by Q′ = kQk−1 +dkk−1.

Its appearance in (A.5) supports this point of view, so will hereafter refer to Q as the

connection. Note that Q and P are not independent, but both derived from the map V.

The equations of motion (A.5) is hence invariant under both gauge transformations and

global G-transformations. We can furthermore use Noethers theorem to derive a gauge

invariant Lie algebra valued Noether (k − 1)-form

J µ =
√

|h|hµνV−1PνV, (A.6)

which is conserved by virtue of the equations of motion. The Noether-form transform in

the adjoint representation of G, so that when V → V ′ = Vg−1,

J µ → J ′µ = gJ µg−1. (A.7)

Note also that J being conserved implies the equations of motion, so (A.5) and (A.6) are

equivalent, which is the natural consequence of the arbitrariness in defining the action of

G from the right or from the left when deriving the equations of motion.

Let us consider the dynamics of this model. Choose a grading of g such that

g =
⊕

ℓ

gℓ, (A.8)

respected by the involution ı, in the sense that ı(gℓ) ⊂ g−ℓ. The restricted root space

decomposition [41] provide for example such a grading, another is given by the level de-

composition under a regularly embedded subalgebra. We can then choose a base of every

level ℓ and −ℓ in terms of generators E(ℓ) and F (ℓ) such that ı(E(ℓ)) = −F (ℓ). Note that

for a finite Lie algebra, the spaces gℓ are zero for |ℓ| bigger than some given N, and if
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dim gℓ > 1, E(ℓ) (and F (ℓ)) has some additional index, enumerating these generators. The

algebra-valued function P can now be expanded, with respect to this grading [67], as

P =
1

2
P(0)K

(0) +
1

2

∑

ℓ≥1

P(ℓ)(E
(ℓ) + F (ℓ)) , (A.9)

and we write K(0) for the elements in p at level zero, i.e. K(0) ∈ Pı(g0), defining J (0) to

span their complement in g0. The connection Q is similarly written

Q =
1

2
Q(0)J

(0) +
1

2

∑

ℓ≥1

P(ℓ)(E
(ℓ) − F (ℓ)) . (A.10)

Inserting these expressions into (A.5) we see that, as all the generators are linearly in-

dependent, (A.5) split into one equation for every generator. These equations are to be

interpreted as equations of motion, but also as generalized Bianchi identities and con-

straints, as the parameters P(l) are not all simultaneously physical fields. More explicitly,

inserting the expansions (A.9) and (A.10) into (A.5), we get the equation of motion for P(0),

1
√

|h|
∂µ(
√

|h|hµνP(0)ν
)K(0) +

1

2
P(0)

µQ(0)µ
[J (0),K(0)]

+
∑

ℓ≥1

P(ℓ)
µP(ℓ)µ

[E(ℓ), F (ℓ)] = 0,
(A.11)

and for the P(ℓ)’s we get

1
√

|h|
∂µ(
√

|h|hµνP(ℓ)ν
)(E(ℓ) + F (ℓ)) +

1

2
Q(0)

µP(ℓ)µ
[J (0), E(ℓ) + F (ℓ)]

− 1

2
P(0)

µP(ℓ)µ
[K(0), E(ℓ) − F (ℓ)]

+
1

2

∑

k,m≥1
k−m=ℓ

P(k)
µP(m)µ

[E(k) − F (k), E(m) + F (m)] = 0.

(A.12)

B Generalities on su(2, 1)

In this section, we will see how to fix su(2, 1) from the complex algebra A2 = sl(3,C). We

will also give a complete list of its generators.

B.1 su(2, 1): definitions

The real form su(2, 1) is the Lie algebra of 3 × 3 complex traceless matrices X, subject to

the constraint

η X +X† η = 0 , (B.1)

with

η =






0 0 −1

0 1 0

−1 0 0




 . (B.2)
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α4

α5

Figure 4. The Tits-Satake diagram of su(2, 1).

This algebra is a non-split real form of the complex Lie algebra A2 = sl(3,C) which can

be written as

sl(3,C) =
5∑

k=4

CFk ⊕ CF4,5 ⊕
5∑

k=4

CHk ⊕
5∑

k=4

CEk ⊕ CE4,5, (B.3)

where the generators Hi, Ei, Fi of sl(3,C) have the following matrix realization in the

fundamental representation

H4 =






1 0 0

0 −1 0

0 0 0




 , H5 =






0 0 0

0 1 0

0 0 −1




 , (B.4)

E4 =






0 1 0

0 0 0

0 0 0




 , E5 =






0 0 0

0 0 1

0 0 0




 , E4,5 = [E4, E5] =






0 0 1

0 0 0

0 0 0




 ,

as well as

Fi = (Ei)
T . (B.5)

The conjugation σ,17 that fixes su(2, 1) may be read off from its Tits-Satake dia-

gram [25, 41] displayed in figure 4 with the following action on the simple roots of A2:

α4 + σ(α5) = α5 + σ(α4). (B.6)

Since there are no black nodes, this implies

σ(α4) = α5, σ(α5) = α4 . (B.7)

Thus on the generators of sl(3,C) we have

σ(H4) = H5, σ(H5) = H4,

σ(E4) = E5, σ(E5) = E4, σ(E4,5) = −E4,5 ,

σ(F4) = F5, σ(F5) = F4, σ(F4,5) = −F4,5 .

(B.8)

17 If g is a real form of the complex Lie algebra gC, it defines a conjugation on gC. Conversely, if σ is

a conjugation on gC, the set gσ of elements of gC fixed by σ provides a real form of gC. Thus, on gC, real

forms and conjugations are in one-to-one correspondence [41].
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The generators of su(2, 1) correspond to the ones which are fixed by σ and they can be

written in terms of the generators of sl(3,C) (B.4) as

h4 = H4 +H5 =






1 0 0

0 0 0

0 0 −1




 , h5 = i(H4 −H5) =






i 0 0

0 −2i 0

0 0 i




 ,

e4 = E4 + E5 =






0 1 0

0 0 1

0 0 0




 , f4 = F4 + F5 =






0 0 0

1 0 0

0 1 0




 ,

e5 = i(E4 − E5) =






0 i 0

0 0 −i
0 0 0




 , f5 = i(F4 − F5) =






0 0 0

i 0 0

0 −i 0




 ,

e4,5 = iE4,5 =






0 0 i

0 0 0

0 0 0




 , f4,5 = iF4,5 =






0 0 0

0 0 0

i 0 0




 ,

(B.9)

where h4, h5 are the generators of the Cartan subalgebra h, e4, e5 and e4,5 are positive

generators while f4, f5 and f4,5 are negative ones.

B.2 k = su(2) ⊕ u(1)

The subalgebra su(2) ⊕ u(1) is defined as the maximal compact subalgebra of su(2, 1). It

is given as the fixed point set under the Cartan involution θ,

k =
{
x ∈ su(2, 1) : θ(x) = x

}
. (B.10)

From the Tits-Satake diagram of su(2, 1) (see figure 4) we infer the following action of the

Cartan involution on the simple roots

θ(α4) = −α5, θ(α5) = −α4 . (B.11)

On the Borel generators of su(2, 1), this corresponds to

θ(h4) = −h4, θ(h5) = h5,

θ(e4) = − f4, θ(e5) = f5, θ(e4,5) = f4,5.
(B.12)

We find that the subalgebra k is generated by:

ũ =
1

2
(e4,5 + f4,5) +

1

6
h5,

t̃1 =
1

2

(
h5 − (e4,5 + f4,5)

)
,

t̃2 =
1√
2

(e4 − f4),

t̃3 =
1√
2

(e5 + f5) ,

(B.13)
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where ũ is the u(1) generator and the t̃i generate a su(2) subalgebra. We thus have the

following Cartan decomposition of su(2, 1),

su(2, 1) = k ⊕ p = su(2) ⊕ u(1) ⊕ p , (B.14)

where p are the subset of su(2, 1) which are anti-invariant under θ.

B.3 The restricted root system of su(2, 1)

Let a be the maximal abelian subalgebra of p which can be diagonalized over R. Then

a = p ∩ h = Rh4. (B.15)

The eigenvalues under the adjoint action of h4 which is the only diagonalizable generator,

are the following

[h4, e4] = e4, [h4, e5] = e5, [h4, e4,5] = 2 e4,5, (B.16)

[h4, f4] = −f4 , [h4, f5] = −f5 , [h4, f4,5] = −2 f4,5. (B.17)

The generator h5 is not diagonalizable over R. Indeed, we have the following commutations

relations

[h5, e4] = 3 e5, [h5, e5] = −3 e4, [h5, e4,5] = 0, (B.18)

[h5, f4] = −3f5, [h5, f5] = 3f4, [h5, f4,5] = 0. (B.19)

According to (B.16) and (B.17), we may decompose su(2, 1) into a direct sum of eigenspaces

labelled by elements of the dual space a∗

su(2, 1) =
⊕

λ

gλ , gλ = {x ∈ su(2, 1) : ∀h ∈ a, adh(x) = λ(H)x}. (B.20)

The non-compact Cartan h4 then generates a 5-grading of su(2, 1) which is given by

su(2, 1) = g(−2) ⊕ g(−1) ⊕ h ⊕ g(+1) ⊕ g(+2). (B.21)

One trivial subspace is h. The other nontrivial subspaces define the restricted root spaces

of su(2, 1) with respect to a and the restricted roots are the λ ∈ a∗. It is now easy to

determine the positive restricted root system σ of su(2, 1)

λ1(h4) = 1 , λ2(h4) = 2 = 2λ1. (B.22)

Hence, the restricted root system displayed in figure 5, consists of the restricted root λ1

which has multiplicity 2 and the highest reduced root 2λ1, with multiplicity 1. This can be

identified with the non-reduced root system (BC)1 [23, 25, 41]. See also [49] for a recent

analysis of su(2, 1) from a more representation-theoretic perspective.

Let Σ be the subset of nonzero restricted roots and Σ+ the set of positive roots, we

define a nilpotent subalgebra of su(2, 1) as

n+ =
⊕

λ∈Σ+

gλ. (B.23)
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• • • • • >

−2 −1 0 1 2

h∗4

Figure 5. The restricted root system of su(2, 1) labeled by the eigenvalues of h4.

Then, the algebraic Iwasawa decomposition of the Lie algebra su(2, 1) reads

su(2, 1) = k ⊕ a ⊕ n+,

=
(
su(2) ⊕ u(1)

)
⊕ Rh4 ⊕

(
Re4 ⊕ Re5 ⊕ Re4,5

)
.

(B.24)

It is only a that appears in the Iwasawa decomposition of su(2, 1) (B.24) and not the

full Cartan subalgebra h since its compact part h5 belong to k. This implies that when

constructing the coset Langragians (2.18) and (2.32) respectively on the cosets C and C∗,
the only part that will show up in the Borel gauge is the Borel subalgebra

b+ = a ⊕ n+. (B.25)

B.4 k∗ = sl(2,R) ⊕ u(1)

The scalar part of the reduced Lagrangian (2.32) was identified with a non-linear σ-model

constructed on the coset C∗ = SU(2, 1)/SL(2,R) × U(1). The generators of the algebra

sl(2,R) ⊕ u(1) associated to the quotient group of this coset are invariant under the Ω4-

involution, defined in (4.35):

k∗ =
{
x ∈ su(2, 1) : Ω4(x) = x

}
, (B.26)

where this involution Ω4 acts on the generators of the Borel subalgebra of su(2, 1) as:

Ω4(h4) = −h4, Ω4(h5) = h5,

Ω4(e4) = f4, Ω4(e5) = − f5, Ω4(e4,5) = f4,5 .
(B.27)

The subalgebra k∗ is generated by:

u = −1

2
(e4,5 + f4,5) +

1

6
h5,

t1 =
1

2

(
h5 + (e4,5 + f4,5)

)
,

t2 =
1√
2

(e4 + f4),

t3 =
1√
2

(e5 − f5) ,

(B.28)

where u is the u(1) generator and the ti generate a sl(2,R) subalgebra.
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C The generators of so(2, 2)

The real form so(2, 2) of the complex algebra D2 = A1⊕A1, is defined as the set of matrices

X =

(

X1 X2

X2
T X3

)

, (C.1)

where all Xi are real 2×2 matrices, and X1 and X3 are skew symmetric [41]. It is therefore

spanned by the six generators

b1 =








0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0








b2 =








0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0








b3 =








0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0








b4 =








0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0








(C.2)

b5 =








0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0







b6 =








0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0








and the choice of base here is to streamline the analysis in section 3.3. In fact, so(2, 2) ∼=
sl(2,R) ⊕ sl(2,R), which is easily seen in this basis as b1, b2 and b3 generate one sl(2,R)

summand, and b4, b5 and b6 the other. The two compact generators are b1 and b4.

D Details on su(2, 1)+++ level decomposition

D.1 Commutators and bilinear forms of A+++
2

The level decomposition of the complex algebra A+++
2 under its A3 = sl(4,R) subalgebra is

performed in section 4.3 and displayed in table 1. At level ℓ = (0, 0), we have a gl(4,R) =

sl(4,R)⊕R algebra generated by Ka
b (a, b = 1, . . . , 4), as well as an extra scalar generator

T . Their relations are

[Ka
b,K

c
d] = δcbK

a
d − δad K

c
b , [T,Ka

b] = 0 ,

(Ka
b|Kc

d) = δadδ
c
b − δab δ

c
d, (T |T ) =

2

9
, (T |Ka

b) = 0 .
(D.1)

All objects transform as gl(4,R) tensors in the obvious way. The T commutator

relations are

[T,Ra] =
1

2
Ra,

[

T, R̃a
]

= −1

2
R̃a. (D.2)

– 48 –



J
H
E
P
0
8
(
2
0
0
9
)
0
9
8

The negative step operators are obtained from the positive ones by lowering the indices.

The commutations relations between a positive generator and the negative one are given by

[Ra, Rb] = δab

(

− 1

2
K + 3T

)

+Ka
b ,

[

R̃a, R̃b

]

= δab

(

− 1

2
K − 3T

)

+Ka
b ,

[

Rab, Rcd

]

= −3 δabcdK + 6 δ
[a
[c K

b]
d] ,

[

Sab, Scd

]

= −δ̄abcdK + 2 δ
(a
(c K

b)
d) ,

(D.3)

with

K = K1
1 +K2

2 +K3
3 +K4

4 , (D.4)

and the bilinear forms are given by

(Ra|Rb) = δab , (R̃a|R̃b) = δab ,

(Rab|Rcd) = 3 δabcd , (Sab|Scd) = δ̄abcd ,
(D.5)

where

δabcd :=
1

2
(δac δ

b
d − δbc δ

a
d) ,

δ̄abcd :=
1

2
(δac δ

b
d + δbc δ

a
d) .

(D.6)

The generators of different rank commute in the following non-trivial way:

[

Sab, Rc

]

= −δ(ac R̃b),
[

Sab, R̃c

]

= δ(ac Rb) ,
[

Rab, Rc

]

= −3 δ[ac R̃
b],

[

Rab, R̃c

]

= −3 δ[ac R
b],

[

Sab, Rcd

]

= 0 .

(D.7)

We identify the Chevalley generators of A+++
2 as

H1 = K1
1 −K2

2, E1 = K1
2 ,

H2 = K2
2 −K3

3, E2 = K2
3 ,

H3 = K3
3 −K4

4, E3 = K3
4 ,

H4 = −1

2
K +K4

4 + 3T, E4 = R4 ,

H5 = −1

2
K +K4

4 − 3T, E5 = R̃4 .

(D.8)
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D.2 Commutators and bilinear forms of su(2, 1)+++

The level decomposition of su(2, 1)+++ under its sl(4,R) subalgebra is performed in sec-

tion 4.3 and displayed in table 2. The generators at opposite levels commute as follows

[ra, rb] = −δab K + 2Ka
b ,

[r̃a, r̃b] = δab K − 2Ka
b ,

[ra, r̃b] = 6 i δab T ,
[

sab, scd

]

= 4 δ̄abcd K − 8 δ
(a
(c K

b)
d) ,

[

rab, rcd

]

= −12 δabcd K + 24 δ
[a
[c K

b]
d] ,

[

rab, scd

]

= 0 .

(D.9)

The generators of different rank commute in the following non-trivial way:

[

sab, rc

]

= −2 δ(ac r̃b),
[

sab, r̃c

]

= −2 δ(ac rb) ,
[

rab, rc

]

= −6 δ[ac r
b],

[

rab, r̃c

]

= 6 δ[ac r̃
b] .

(D.10)

The generators are normalized as

(ra|rb) = 2 δab , (r̃a|r̃b) = −2 δab ,

(rab|rcd) = 12 δabcd , (sab|scd) = −4 δ̄abcd .
(D.11)
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[70] A. Keurentjes, Poincaré duality and G+++ algebras, Commun. Math. Phys. 275 (2007) 491

[hep-th/0510212] [SPIRES].

[71] M. Günaydin, K. Koepsell and H. Nicolai, The Minimal Unitary Representation of E8(8),

Adv. Theor. Math. Phys. 5 (2002) 923 [hep-th/0109005] [SPIRES].

[72] R. Argurio, F. Englert and L. Houart, Intersection rules for p-branes,

Phys. Lett. B 398 (1997) 61 [hep-th/9701042] [SPIRES].

[73] J.M. Maldacena, Black holes in string theory, hep-th/9607235 [SPIRES].

[74] P.C. West, Very extended E8 and A8 at low levels, gravity and supergravity,

Class. Quant. Grav. 20 (2003) 2393 [hep-th/0212291] [SPIRES].

[75] H. Nicolai and T. Fischbacher, Low level representations for E10 and E11, hep-th/0301017

[SPIRES].

[76] P.C. West, The IIA, IIB and eleven dimensional theories and their common E11 origin,

Nucl. Phys. B 693 (2004) 76 [hep-th/0402140] [SPIRES].

[77] B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and

M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [SPIRES].

[78] S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on

T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [SPIRES].

[79] N.A. Obers and B. Pioline, U-duality and M-theory, an algebraic approach, hep-th/9812139

[SPIRES].

– 54 –

http://dx.doi.org/10.1007/s00220-007-0309-0
http://arxiv.org/abs/hep-th/0510212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0510212
http://arxiv.org/abs/hep-th/0109005
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0109005
http://dx.doi.org/10.1016/S0370-2693(97)00205-0
http://arxiv.org/abs/hep-th/9701042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9701042
http://arxiv.org/abs/hep-th/9607235
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9607235
http://dx.doi.org/10.1088/0264-9381/20/11/328
http://arxiv.org/abs/hep-th/0212291
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212291
http://arxiv.org/abs/hep-th/0301017
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0301017
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.004
http://arxiv.org/abs/hep-th/0402140
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402140
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://arxiv.org/abs/0801.1294
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1294
http://dx.doi.org/10.1016/S0550-3213(97)00622-6
http://arxiv.org/abs/hep-th/9707217
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9707217
http://arxiv.org/abs/hep-th/9812139
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9812139

	Introduction and discussion
	Symmetries and BPS solutions of pure N=2 supergravity
	Einstein-Maxwell in D=4
	SU(2,1) and coset models
	Solutions with space-like Killing vector
	Solutions with time-like Killing vector

	Action of SU(2,1) on BPS solutions
	Action of the nilpotent generators
	Action of the non-compact Cartan generator
	Action of K*
	Describing K* as a subgroup of SO(2,2)
	The space of BPS solutions
	The quantum moduli space and string theory

	On su(2,1)**+++
	Generalities on A(2)**+++
	Definition of su(2,1)**+++
	Level decomposition
	Level decomposition of A(2)**+++
	Level decomposition of su(2,1)**+++

	 Cartan and temporal involutions

	On su(2,1)**++ subset su(2,1)**+++ and sigma-models 
	Infinite-dimensional cosmological sigma-model 
	Dictionary

	The su(2,1)**+++ algebraic structure of BPS branes
	Weyl reflection in su(2,1)**+++
	Weyl reflection in su(2,1)
	Effect of Weyl reflections on space-time signature


	Embedding of su(2,1)**+++ in e(11)
	The brane setting
	Description of the brane configuration in e(11)
	The regular embedding
	The non-compact Cartan generators of su(2,1)**+++
	The other generators of su(2,1)**+++


	Non-linear sigma-models over coset spaces
	Generalities on su(2,1)
	su(2,1): definitions
	k=su(2) oplus u(1)
	The restricted root system of su(2,1)
	k*=sl(2,R) oplus u(1)

	The generators of so(2,2)
	Details on su(2,1)**+++ level decomposition
	Commutators and bilinear forms of A(2)**+++
	Commutators and bilinear forms of su(2,1)**+++


